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Abstract

This paper studies the impacts of China’s dual-credit policy (joint management of fuel

consumption and new energy vehicle credits) on the electrification of the auto industry. Using

a heterogeneous-firm model, newly assembled data, and difference-in-differences designs, we

document several findings. First, the policy significantly lowers the relative price of electric

vehicles (EVs) compared with gasoline vehicles (GVs). Second, small firms reduce GV production

to avoid credit obligations, while larger firms relatively expand it. Third, fuel economy

improvement slows as EV production serves as a substitute compliance strategy. Fourth,

cannibalization effect discourages incumbents to produce high-quality EVs while newcomers

offer superior products. Fifth, innovation shifts toward EV and intelligence-related technologies,

weakening path dependence. Finally, EV-focused firms hire more skilled labor and cluster in

the most developed regions. Our findings highlight the positive role of the dual-credit policy in

directing technical change towards electrification.
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1 Introduction

The development of electric vehicles (EVs) and related technologies is crucial for reducing

fossil fuel consumption and carbon dioxide emissions. Beyond their environmental benefits,

the rise of EVs is transforming the global automotive industry, with spillover effects on

related sectors such as battery manufacturing and artificial intelligence. However, because EVs

generate positive externalities, private investment in their development often falls short of the

socially optimal level. Designing effective policies to promote EV adoption and innovation

has therefore become a global priority. In addition to supportive measures such as subsidies

and infrastructure investment, regulatory policies have gained increasing popularity among

governments. Yet the impact of such policies on the electrification of the automotive industry

remains under-investigated.

This paper studies how the dual-credit policy–the joint regulation of fuel consumption and

EV production through a credit trading system–reshapes the supply side of the automotive

industry and affects the growth of EVs in China, the world’s largest car market and a leading

country in EV development. We focus on firms’ production decisions regarding scale, pricing,

and product attributes across gasoline vehicles (GVs) and EVs, and on how credit trading and

policy’s dual targets redirect innovation and worker allocation.

The dual-credit policy, formally titled Parallel Management of Corporate Average Fuel

Consumption (CAFC) and New Energy Vehicle (NEV) Credits for Passenger Vehicles, combines

elements of the Corporate Average Fuel Economy (CAFE) regulation in the United States and

Europe with California’s Zero-Emission Vehicle (ZEV) program. Introduced in September 2017

and implemented in April 2018, it (1) requires CAFC credit, calculated as the gap between

firms’ average fuel consumption and the compliance level, to be non-negative for every firm

after credit trading; (2) introduces a tradable NEV credit scheme and a 1:1 conversion rate

from NEV credits to CAFC credits (but not the other way round), allowing firms to outsource
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CAFC compliance to those with comparative advantages in generating credits; (3) introduces

an NEV credit target for firms whose GV production exceeds a threshold, generating aggregate

demand for EVs that redirects production and innovation; (4) sets calculation methods for both

credits that create targeted demand for a selected set of car attributes.

To understand the impacts of the dual-credit policy, we build a static model of

heterogeneous car manufacturers maximizing profits under two-target regulations. Firms

differ in their technology endowment, factor market prices, and existing product mix. They

choose the composition of their product fleet, product prices, and product attributes to

maximize profits.

The model produces several testable predictions. First, the policy implicitly imposes a

larger net tax burden on GVs than on EVs. Second, GV production becomes more concentrated

because medium-size producers scale down to avoid NEV credit targets, whereas large

producers relatively expand production. Third, producing EVs is more effective than lowering

GV fuel consumption for meeting CAFC targets, reducing incentives to improve fuel economy.

Fourth, newcomers build higher-quality EVs than incumbents. Fifth, optimal attribute choices

are positively correlated with domain-specific technology endowments. Finally, optimal

demand for specific types of talent depends on attribute choices, output elasticities, and wages.

To test these predictions, we conduct the empirical analysis in two steps. In the first step,

we examine manufacturers’ production responses. We study effects on both the quantity and

the quality of cars produced, measuring quality with a set of car attributes. We also distinguish

between incumbents and new entrants following the policy shock. In the second step, we

explore manufacturers’ input responses, focusing on the impacts of the dual-credit policy on

innovation and workforce allocation.

The policy is economy-wide, leaving no pure control group. We therefore test model-based

predictions with difference-in-differences and event-study designs that define treatment and

control groups around policy-defined thresholds and predicted margins of adjustment, based
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on pre-determined firm characteristics. To establish causality, we assess parallel pre-trends

between the treatment and control groups. We also account for concurrent demand-side

interventions, including national/local purchase subsidies, tax exemptions, and charging

investments, with year fixed effects and additional controls where relevant.

To support the empirical analysis, we use various data sets. First, we draw on

administrative records of car production and credits. Second, we compile a new data set

that covers the (near) universe of all new cars introduced by manufacturers and augment it

with detailed specification-level data from a leading car information-sharing platform. For

innovation, we compile patents filed by car manufacturers, their key shareholders (those

holding more than 25% ownership), and all affiliated firms wholly or partially owned by

those shareholders. Finally, we collect LinkedIn profiles of China-based users who worked

for car manufacturers between 2010 and 2024 to describe workforce allocation within the auto

industry.

We document several findings consistent with the model predictions. First, we find

that the relative retail price of EVs compared with GVs falls by 48 log points after the

policy shock. This sharp decline coincides with a reduction in GV production and a rapid

growth in EV production. Decomposing this relative price drop indicates that the credit

value directly generated by the policy explains 1/4 of the reduction. Second, firms whose

pre-period GV production exceeded the threshold cut their GV output by 26 log points,

and among these firms, the reduction is mainly driven by relatively smaller ones. Third,

firms with above-median pre-period CAFC levels significantly increase EV production but

do not reduce GV fuel consumption more than their below-median counterparts, leading to

slower improvement in fuel economy of GVs. Fourth, but of the lack of competition with

their own products, newcomers build better EVs than incumbents, especially on attributes

valued by consumers but not rewarded in credit calculations. Fifth, after the policy shock,

path dependence in innovation becomes much weaker, suggesting that the policy induces
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firms to work in EV-related and intelligence-related fields rather than those where they hold

comparative advantage. Moreover, the policy shock induces newcomers to increase innovation

in automobile-related fields, especially EV-related technologies even before they launch their

first car. Finally, EV-focused firms are more likely to locate in developed regions with a larger

talent supply in EV-related fields.

Our findings suggest that the dual-credit policy accelerates the development of the EV

industry and directs innovation toward EV-related fields. The free trading of credits enables

the market to select firms with comparative advantages to supply credits. In this sense, the

implicit subsidies induced by the policy help circumvent the common criticism of industrial

policies that the government may fail to pick the right “winner.” That said, even with

newcomer entry and talent reallocation enhancing efficiency, the price wedge induced by the

policy could still contribute to misallocation and deadweight loss. A comprehensive welfare

analysis of the dual-credit policy is left for future research.

This study contributes to several broad strands of literature. First, this paper adds to a

recently surging literature on the development of EV. Previous literature investigates multiple

demand-side factors that affect EV adoption, including purchase subsidies (Barwick et al.,

2024a; Hu et al., 2025; Muehlegger and Rapson, 2022; Remmy, 2024; Sinyashin, 2021), tax

exemptions (Allcott et al., 2024), some non-monetary incentives such as released driving

and licensing restrictions (Li et al., 2023, 2022; Zhang et al., 2018), charging infrastructure

supports (Dorsey et al., 2025; Li et al., 2017; Springel, 2021), and other policies (Davis et al.,

2025; Dugoua and Dumas, 2024; Forsythe et al., 2023). Recent research by Fang et al. (2025)

evaluate the complementary effect of high-speed railway on EV adoption. However, the

supply-side behavior during the transition from GV to EV is largely under-investigated. A

notable exception is the study by Li (2023) that looks at how the compatibility of charging

standards affect EV producers’ investment in charging infrastructure. This study examines

how a key supply-side intervention reshapes firms’ production, innovation, and hiring.
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Second, this study contributes to the literature on directed technical change, especially

directed clean innovation (see Hémous and Olsen, 2021, Popp et al., 2010, and Popp, 2019 for

excellent reviews). A large number of theoretical works that analyze the interplay between

input prices and directed technical change (Acemoglu, 1998, 2002; Acemoglu et al., 2012,

2016; Loebbing, 2022). Recently, there have been growing empirical results on the causes and

consequences of directed technical change (Acemoglu et al., 2023; Aghion et al., 2024; Calel

and Dechezleprêtre, 2016; Hanlon, 2015; Hassler et al., 2021; Gugler et al., 2024). Some studies

go beyond input price and market size as the drivers of directed technical change, turning to

broader settings, such as output price shocks, in triggering directed technical change (Aghion

et al., 2016, 2023). This study follows the latter strand of literature and regards the dual-credit

policy as generating a wedge between EV and GV prices, which in turn changes the production

and innovation behavior of firms.

Third, this study contributes to the literature on regulations in the automotive industry.

Given the significant environmental impacts of vehicle use, regulations on fuel economy

and emissions are prevalent worldwide. Many studies examine these regulations’ effects on

automakers’ attribute choices (Jacobsen, 2013; Klier and Linn, 2016; Knittel, 2011; Leard et al.,

2023), vehicle scrappage (Jacobsen and Van Benthem, 2015; Jacobsen et al., 2023), as well as

collusion, gaming, and other strategic behaviors (Alé-Chilet et al., 2025; Anderson and Sallee,

2011; Reynaert, 2021). To the best of our knowledge, the existing literature mainly focuses on

the product space that include only gasoline vehicles. In this study, we add electric vehicles as

an additional product type in automakers’ choice sets, and study the substitution of GVs with

EVs as well as the attribute choices of each type. Accordingly, this study bridges the literature

on regulation and directed technical change by examining directed changes in the types of

products chosen by firms, in addition to R&D or patenting behavior.

Finally, this paper contributes to the literature on the effectiveness of industrial policies.

Understanding the efficacy of industrial policies has been an active topic in economics (refer
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to Juhász et al., 2024 for an extensive review). Recently, Lane (2025) investigates the role of

industrial policies, mainly credit and export policies, in advancing industrialization in South

Korea. Kantor and Whalley (2025) reviews the effect of public R&D in fostering manufacturing

growth by examining the space competition between the US and the Soviet Union. Barwick

et al. (2025) discuss the relative performance of different parts of industrial policy, including

differential targeting subsidies and consolidation policies, in stimulating shipbuilding in

China. Closely related to this paper, Barwick et al. (2024b) analyze the relationship between

industrial policies—mainly credit and subsidies—and innovation in EV-related fields. In this

study, we regard the dual-credit policy as not only an emissions regulation for cars, but also an

industrial policy that targets EV development in China because it induces implicit subsidies

toward EVs. Unlike many industrial policies studied in previous literature, regulations like

the dual-credit policy do not impose an explicit fiscal burden on the government. In this sense,

the role of regulation in directed technical change and accompanying product change sheds

light on effective industrial policy design.

The rest of the paper is organized as follows. Section 2 introduces the dual-credit policy

and the data sets used in this study. Section 3 shows some stylized facts regarding the Chinese

automotive industry in the studied period. Section 4 builds a theoretical framework and

derives testable implications of the impacts of the dual-credit policy. Section 5 discusses the

empirical strategies for identifying the impacts of the policy. Section 6 shows the results of

the first step of the empirical analysis. Section 7 shows the results of the second step of the

empirical analysis. Finally, Section 8 concludes.
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2 Background and Data

2.1 CAFC regulation before the dual-credit policy

In 2013, the Chinese government introduced the Corporate Average Fuel Consumption

(CAFC) credit regulation. CAFC credits are computed at the firm–year level as the difference

between the target fuel consumption and the firm’s actual corporate average fuel consumption

levels. The target is determined by each vehicle’s curb weight and the number of seats (see

Appendix B.1 for details). If actual fuel consumption exceeds the target, the firm records

negative credits; if it is below the target, the firm earns positive credits.

Compliance and enforcement operate at the firm level, and inter-firm transfer or trading

of CAFC credits was not permitted. Firms with negative credits face administrative penalties,

such as restrictions on capacity expansion and the approval of new models and investments.

2.2 NEV credits and dual-credit framework

Following policy consultations in September 2016 and a draft for comments in June 2017, the

government introduced Parallel Management of Corporate Average Fuel Consumption and New

Energy Vehicle Credits for Passenger Vehicles in September 2017, adding New Energy Vehicle

(NEV) credits and linking them to the CAFC system. The policy took effect on 1 April 2018. The

NEV credit regulation is similar in spirit to California’s Zero-Emission Vehicle (ZEV) program.

Each year, a firm’s NEV credit target is set in proportion to its total gasoline-vehicle production.

Firms generate positive NEV credits by producing battery electric vehicles, plug-in hybrid

electric vehicles, and fuel-cell electric vehicles. Each technology has its own credit formula

based on vehicle attributes; Appendix B.2 summarizes the rules.

The NEV target applies only to firms whose total gasoline-vehicle production exceeds

30,000 units. However, the target is calculated on total production rather than only the

increment above 30,000 units, creating a discontinuity in incentives at the threshold.
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Since the dual-credit system’s introduction (announced in 2017; implemented in 2018), it

has been revised twice—first announced in 2020 (implemented in 2021), and again in 2023. As

shown in Appendix B.2, across revisions the government tightened requirements by adjusting

per-vehicle crediting rules (e.g., multipliers) and raising effective targets, making compliance

progressively more stringent. This pattern suggests policymakers view the dual-credit policy

as an ongoing instrument to support EV development.

2.3 Trading, banking, and clearing of credits

Credit deficits for both CAFC and NEV are announced in June of the following year. Firms

then have a three-month window to clear their balances. Failure to do so triggers strong

administrative penalties (e.g., restrictions on introducing new products, approving new

investment projects, and expanding production capacity). In practice, firms almost always

clear their balances.1 Accordingly, we assume firms clear annually or at least plan under that

expectation.

CAFC credits are not freely tradable. Transfers are allowed only among “connected firms”

as defined by regulation (see Appendix B.3 for details). Positive CAFC credits can offset only

negative CAFC credits, not NEV deficits. By contrast, NEV credits are tradable between firms

and can offset both NEV and CAFC deficits at a 1:1 rate. Transactions occur bilaterally and are

executed on a government-run trading platform rather than through an open marketplace.

Firms may bank both CAFC and NEV credits for future use but cannot borrow credits from

future production. While in theory firms could contract over future credits, such arrangements

appear rare given the small number of active traders, regulatory uncertainty from evolving

credit rules, and limited price transparency. We therefore assume firms do not trade credits

in advance. In addition, credits generally cannot be used to offset deficits from prior years,

1Public information indicates that uncleared deficits accounted for about 2.1%, 0.5%, and 0.1% in 2019, 2020, and

2021, respectively.
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with limited exceptions in 2020–2021. In other words, a given year’s negative NEV balance

can typically be offset only with NEV credits generated on or before that year. Banking allows

firms to smooth compliance costs intertemporally. However, because firm-level records of

banking and trading are not observed, we do not model banking behavior empirically and

abstract from it in the main analysis.

It is worth noting that only production and imports for domestic sales are included in

credit calculations; exports are excluded. This aligns with the policy’s objective of reducing

domestic fuel consumption and improving local environmental quality. Accordingly, our

analysis focuses on domestic production and imports, excluding export volumes.2

2.4 Other simultaneous interventions related to EV development

Alongside the dual-credit policy, other concurrent policies aim to promote electric vehicles.

These policies and their dynamics may also affect EV production decisions.

First, the government has provided direct purchase subsidies for consumers who buy

electric vehicles since 2010. The central government subsidy has decreased over time.

Appendix B.4 provides details on the evolution of national subsidy levels. The post-2017

phase-out suggests that subsidies were not the main driver of EV development after the

policy’s introduction. Second, EV buyers are exempt from the vehicle and vessel tax and

the vehicle purchase tax. The vehicle and vessel tax ranges from 60 CNY (8.4 USD) to 5,400

CNY (760 USD) according to displacement level. The vehicle purchase tax is typically 10%

of the price, with some tax deduction for low-displacement vehicles during 2015 to 2017.3

Third, the government provides fiscal subsidies and direct investments to build charging

2Some firms may respond on the export margin (e.g., reallocating models to export markets), which could affect

revenues, profits, and capacity utilization. These adjustments do not directly affect our main outcome variables

and are beyond the scope of this paper.

3There is a 30,000 CNY (4,200 USD) cap imposed for purchases after 1 January 2024. After 1 January 2026, the

vehicle purchase tax is no longer waived but is reduced by 50% for EV purchases. The tax reduction is capped at

15,000 CNY (2,100 USD).
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infrastructure. See Appendix Tables B2 and B3 for differential subsidy levels across regions.

Local governments also provide their own subsidies toward charging infrastructure.

Understanding the impacts of these simultaneous policies is beyond the scope of this paper.

However, we emphasize that these policies do not compromise our main objective of assessing

the impact of the dual-credit policy for two reasons. First, these other interventions are mostly

demand-side, affecting consumer demand for EVs relative to GVs. Throughout, we focus

on supply-side dynamics. That is, we compare firms by product fleet, market entry timing,

and technological endowments. Although some firms may disproportionately focus on GV

or EV production, there are no ex ante restrictions on the choice of product mix. Therefore,

we treat firms as equally affected by demand-side policies. Second, most of these policies are

implemented at the national level. In the empirical analysis, we include year fixed effects,

which absorb the effects of national policies and much of the regional policy variations that

are proportional to the national level. Also, there are no ex ante restrictions on which car

manufacturers can operate in which regions within the country. In this case, car manufacturers

are equally exposed to regional policies.

2.5 Data

We assemble several new datasets in this study. Here we provide a brief introduction to the

data sets used in this paper, with more details in Appendix A. Before introducing the data,

note that this study focuses on passenger-vehicle production for domestic sales in China. No

commercial vehicles and no vehicle exports are included in our data.

There are three main datasets used in this study: (1) a newly built dataset that provides

rich administrative information on production and attributes of the (near) universe of new car

products in China from 2010 to 2024; (2) extended attributes, prices, and sales for the majority

of car products in China from 2010 to 2024 obtained from autohome.com; and (3) production,

import, and credit records of all active car manufacturers from 2013 to 2024.
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For the administrative new-car product dataset, we first collect the Announcements

for Vehicle Manufacturers and Products. Each announcement documents which original

equipment manufacturer introduces which new product. The detailed trim level information

of each car product is collected from the Road Motor Vehicle Manufacturers and Products

Information Inquiry System.4 In this system, we can search and identify trim-level new

car products.5 The detail information include the manufacturer, brand, release date,

production location, weight, size, and supplier information for engines, batteries (for EVs),

and ABS systems. To further supplement the data with performance measures, including

fuel consumption, range, battery capacity, etc., we also collect information from the China

Automobile Energy Consumption Query System and multiple electric-vehicle catalogues

released by the Ministry of Industry and Information Technology. Together, we build a dataset

of about 20,000 trim-level car products introduced from 2010 to 2024.

This dataset offers several advantages over existing datasets. First, it provides more

granular information than the model level. With trim-level data, we can distinguish variants

and provide a more precise picture of product innovation and upgrading. Second, this dataset

offers a complete picture of all new car products in the market because every car product must

be announced by the Ministry of Industry and Information Technology to be eligible for sale.

This ensures that we do not miss unpopular models with low sales. Finally, this dataset focuses

on new car products, which is particularly suitable for analyzing automotive innovation and

the dynamics of car manufacturers.

In addition to the above dataset, we collect detailed information on car attributes at the

specification level from autohome.com, covering 2010–2024.6 The key advantage of this dataset

4https://govs.miit-eidc.org.cn/miitxxgk/gonggao_xxgk/index.html.

5In this paper, we use manufacturer code plus 4-digit product code to define models of vehicles. And we use the

complete trim code, consisting of manufacturer code, 4-digit product code, classification code, and customized

code, to define trims of vehicles. See Appendix A for details.

6Specification level is similar to the trim level discussed above. While different trims satisfy the condition that each

trim should have substantial differences in attributes, different specifications may only differ in attributes that are
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is that it provides model-month sales and specification-level prices. In addition, it provides

information on a much larger set of attributes, especially those related to vehicle intelligence.

For example, we can observe whether a specification supports fast charging, whether it is

equipped with driver-assistance features, and the vehicle’s operating system. This information

is valuable for defining a high-quality car. However, this dataset also has drawbacks that

prevent us from using it as the main dataset for car products. First, it does not cover the

universe of new car products. Second, missing data are more prevalent. Third, in this dataset,

models and specifications are not uniquely matched to individual car manufacturers. In

Appendix A, we provide more details on linking this dataset with car manufacturers so that

we can distinguish newcomers’ products from those of incumbents.

Administrative records of annual production, imports, and credits are publicly accessible

from annual accounting reports released by the Ministry of Industry and Information

Technology.7 We also observe calculated CAFC and compliance levels of fuel consumption

from those reports. Because this list includes all active car manufacturers in the market that

are subject to the dual-credit policy, we use these reports to identify firm entry and exit.

Except for the main data sets introduced above, we also collect data to describe the

innovation activities of car manufacturers and the labor market of the automotive industry.

Technology and innovation are measured by patents in this study. To measure innovation

at the firm level, we collect all patents filed through the China National Intellectual Property

Administration (CNIPA) from Google Patents, covering 1985–2024.

Car manufacturers are often part of large conglomerates. While each car manufacturer

produces vehicles as the final product, many innovations related to car manufacturing occur

outside the manufacturer. To measure manufacturers’ innovation more accurately, we use

patent data for all car manufacturers, their key shareholders, and affiliated firms. Covering the

not related to driving performance, such as the interior design.

7https://www.miit.gov.cn/gyhxxhbwjcx/index.html
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full network of shareholders and affiliates provides two advantages. First, ignoring affiliates

would miss a large share of relevant patents. As shown in Appendix Figure A2, about

70% of all patents are held by affiliates rather than manufacturers; the proportion is similar

when focusing on car-manufacturing domains. Second, for newcomers who enter after the

dual-credit policy, including affiliates of the key shareholders allows us to observe pre-policy

innovation, enabling an event-study design to analyze how their innovation responds to the

policy shock. In practice, key shareholders are those who directly or indirectly hold 25%

or more of a manufacturer’s shares. Affiliated firms are those held by car manufacturers

and their key shareholders. To identify key shareholders and affiliates, we manually collect

firm ownership structure data from tianyancha.com, a leading Chinese platform for firm

registration information. Appendix A shows a sample page from tianyancha.com. In sum, we

leverage more than 1.5 million patents for the network defined above. This dataset should fully

capture manufacturers’ innovation behavior but does not necessarily include all car-related

innovations.8

Following prior literature, we categorize patents into EV-related and GV-related based on

International Patent Classification (IPC) and Cooperative Patent Classification (CPC) codes

(Aghion et al., 2016; Barwick et al., 2024b). In addition, we define intelligence-related patents

related to vehicle intelligence, human–device interaction, and autonomous driving. To our

knowledge, this is the first study to categorize intelligence-related patents. We view this as

a valuable addition to the literature, as vehicles are now not only transportation devices but

also smart devices that provide multimedia entertainment and incorporate AI for autonomous

driving.9 While intelligence-related features are more prevalent among EVs, we do not treat

8For example, research institutions and universities also hold many car-related patents.

9In practice, EV-related patents cover the EV production process, including battery technology, charging systems,

electric powertrain, and vehicle control systems based on electric power. GV-related patents cover the GV

production process, including fuel systems, internal combustion engines, transmission technologies, exhaust

treatment, and vehicle control systems based on fuel power. Intelligence-related patents cover vehicle intelligence

(but not general AI), including autonomous driving, head-up displays, human–vehicle interaction systems, and
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them as exclusive to EVs; rather, they are general technologies that apply to both EVs and

GVs. See Appendix Table A1 for all IPC and CPC codes used to define EV-, GV-, and

intelligence-related patents.

Finally, the data of labor market in the automotive industry comes from LinkedIn profiles

registered in China and captured in a June 2025 snapshot. To construct the sample, we first

identify all car companies and car groups in the Chinese automotive market based on the list

of original equipment manufacturers. In total, we identify 55 groups. We then focus on profiles

that worked in at least one of those groups during 2010–2024. The final sample includes 173,320

user profiles and 420,322 job-spell records. From these records, we identify employers and job

positions and reconstruct individual job histories. In addition, we observe education, gender,

and ethnicity for individuals when the information is available in the profile.

3 Descriptive Evidence

With the above datasets, we document several stylized facts that characterize the Chinese

automobile industry since 2010.

First, Figure 1 shows the dynamics of new car products in China. Before 2014, EVs

accounted for only a minimal share of new car products. However, that share has surged

over the past decade. By the end of 2024, more than 80% of new vehicles introduced to the

market are EVs, especially battery electric vehicles (BEVs). This fact echoes the surge in EV

penetration in the automobile industry.

Second, the performance of EVs improved dramatically in the past decade, especially

compared with the nearly stagnant attributes of GVs (see panels A and B in Figure 2). Among

multiple attributes, the improvements in range and battery capacity are the most remarkable.

At the same time, we also observe significant improvements in maximum speed and battery

V2X networking.
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Figure 1: Share of New Products

Notes: Figure shows the dynamics of the share of new trims of battery electric vehicles (BEV), plug-in hybrid
vehicles (hybrid) and the sum of these two. Each triangle and each circle is based on the data from one
Announcement for Vehicle Manufacturers and Products. The black dots indicate the average of the total share of
BEV and hybrid within a calendar year.

energy density. By contrast, improvements in GVs are not obvious, even for the same attribute

like maximum speed. Both EVs and GVs exhibit growth in curb weight, indicating a change

in consumer preferences; however, the change for GVs is also less pronounced. Finally, it is

worth noting that average fuel consumption remained stable over the last decade, even as the

government sought to improve fuel economy over time.

Remarkably, these improvements occur not only in key transportation attributes of EVs

but also in attributes that make EVs smart devices like smartphones in the era of intelligence.

Notably, the improvement in equipping EVs with a system-on-chip (SoC) far exceeds that

for GVs (see panels C and D in Figure 2). A system-on-chip is one of the key features that

determines a vehicle’s computational capacity, which in turn determines its smartness. The

relative advantage in EVs suggests that innovation efforts may have shifted from GV-related

fields to EV-related fields.

Third, the automobile market has undergone substantial restructuring since the policy’s

implementation. The largest gasoline vehicle manufacturers in China are mostly joint ventures

between foreign automakers and domestic firms (see panel A of Figure 3), and foreign-branded
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Figure 2: Dynamics of Vehicles’ Performance

Notes: Figure shows the dynamics of vehicle attributes. Each marker indicates the average level of a year
compared with the average level in 2015 (which is normalized to be 1). Data source: administrative new car
product data.

cars take up most of the Chinese GV market. The EV side of the market looks markedly

different (see panel B of Figure 3). On the one hand, many key EV manufacturers are new

to the market. On the other hand, most key EV manufacturers are domestic firms rather than

joint ventures.10

Consistent with the above fact, before 2018, few manufacturers left the market, indicating

a relatively stable market structure. Afterwards, the number of firms leaving the market

increased markedly (see Figure 4). Yet, the total number of active car manufacturers peaked

around 2018 as well, indicating the even more newcomers entered the market. These

10Recent research by Bai et al. (2020) on the “quid pro quo” policy in the Chinese auto industry documents the

technological advantages of foreign automakers in GV production and the technology spillovers from them to

domestic firms. Given these advantages, along with the accumulated experience and “know-how” of existing

joint ventures, the leading position of new domestic manufacturers in EV production is surprising.
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Figure 3: Top Manufacturers in the Automobile Market

Notes: Figure shows top manufacturers of gasoline vehicles (GVs) and electric vehicles (EVs) in the market. The
y-axis reports residualized sales per model derived from manufacturer fixed-effect estimates. The regression
controls for body type, energy type, and year fixed effects, using data from autohome.com. Results are
qualitatively robust with or without price controls. See Appendix C for details.

newcomers mainly specialize in EV production. Their market shares have grown rapidly since

entry, reaching about 13% of total production in 2024 (see Appendix Figure C2).
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Figure 4: Number of Manufacturers Leaving the Market

Notes: In this figure, bars show the dynamics of the number of manufacturers leaving the market, while triangles
show the dynamics in the total number of active manufacturers. For a given bar indicating leaving manufacturers
in a year t, it means that this number of manufacturers is last observed in year t in the data. Data source:
administrative production records of each original equipment manufacturer.
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4 Theoretical Framework

This section introduces a theoretical framework for consumer choice and firm behavior to

understand the impacts of the dual-credit policy. The model builds on existing work about

regulations in the automotive industries (Jacobsen, 2013; Reynaert, 2021). Unlike in previous

literature where there are only one regulation of fuel consumption on vehicles, here there are

two regulations imposed. In this model, firms choose between different strategies to cope with

the regulatory targets for both CAFC credits and NEV credits. The interplay between GVs

and EVs production decisions are absent in previous literature. We derive several testable

implications from the model, which serve as the basis for the empirical analysis in Section 6

and Section 7.

4.1 Setup

The market is defined as the domestic market observed in each year y.11 There are F firms in

the market, denoted by f ∈ {1, 2, ..., F}.12 There are J + 1 products in the market, with the

outside product denoted by j = 0 and different models of vehicles denoted by j ∈ {1, 2, ..., J}.

Each firm offers part of the J products available in the market. The ownership structure of

product is capture by a J × J matrix Φ f , where the j − k element equals one if product j and

product k belong to the same firm f .

Demand

There is a measure of I consumers in the market. For simplicity, we assume that I is

constant across years. Allowing I to vary across years would not affect our results. Consumers

make discrete choice among different products to maximize their utility. Quantity of product

consumed is not considered because in most cases people buy one car at a time. Consumers

11Because export is not included in the dual-credit policy, here we do not take export into account, assuming that

all car manufacturers sell only in the domestic market.

12In this simplified model, we consider each firm as an independent decision maker, abstracting away the affiliation

structure of large car manufacturing groups.
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are assumed as homogenous in this simplified model. The indirect utility of consumer can be

written as: 
u0y = ε0y

ujy = xjyβx − αpjy + ξ j + τy + ε jy, j = 1, 2, . . . , J

where u0y captures the utility of choosing the outside good 0 in year y and ujy captures the

utility of choosing a specific car j in year y. Observed car attributes are captured by xjy, while

car price is denoted by pjy. Product fixed effect ξ j and year fixed effect τy are included to

capture time-invariant product characteristics and general time trends, respectively. Finally, ε jy

is the idiosyncratic preference shock. Suppose ε jy follows a Type-I extreme value distribution,

we have the following logit choice probability of product j:

sjy =
exp

(
−αpjy + ξ j + τy + xjyβx)

1 + ΣJ
l=1 exp

(
−αply + ξl + τy + xlyβx

)
The demand for each product j can be written as the product of product share sjy and the

market size I :

qjy = sjyI

Supply

In each period, firms produce different cars to maximize profits. The firm decisions are

characterize by the composition of product fleet J f , as well as the price pj, and attributes xj of

each product j. At this stage, we first consider the maximizing problem given the product fleet

of firms. Under the dual-credit policy, we can write firm’s maximization problem as follows:

max
pj,ej,rj

π̃ f ≡ ∑
j

(
pj − cj

)
qj + Fg (Qg, Qe) + Fe (Qg, Qe)
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where

Fg (Qg, Qe) = λ
g
f


∑J

j=1 ēj
(
wj
)

qj

∑J
j=1 qj

· η︸ ︷︷ ︸
compliance level

−
∑J

j=1 ejqj

∑J
j=1 qjW︸ ︷︷ ︸

actual FC

 · Qg

Fe (Qg, Qe) = λe
f

 ∑
j∈Je

k
(
rj
)

qj︸ ︷︷ ︸
attribute-based credit

− 1 (Qg ≥ 30000) · γ · Qg︸ ︷︷ ︸
credit target


where cj is the marginal cost of producing product j. Under an implicit assumption that

the car market clears, qj is the number of production and demand of product j. We use

Fg (Qg, Qe) and Fe (Qg, Qe) to summarize the shadow revenues from CAFC (g) and NEV (e)

credits, respectively. They are both functions of firm-level aggregate production of gasoline

vehicles (Qg) and electric vehicles (Qe). We omit the y subscript in the above equations.

Specifically, λ
g
f and λe

f are the shadow prices of CAFC and NEV credits, respectively. Here,

we do not use the actual transaction prices of credits. In addition, we allow for firm-specific

shadow prices even though credits are tradable in the market. We define the shadow price

in this way for several reasons. First, the price of credit is determined by bilateral deals,

which vary across deals. Second, the price of credit is not transparent and is not observed by

econometricians. Third, the market size for credits changes across years. It may be the case that

the aggregate supply of positive credits exceeds or falls short of aggregate demand. In either

case, not all costs and revenues from credits are realized, and the actual transaction price of

credits deviates from the shadow price used in a firm’s decision-making process. Finally, we

treat firms as strategically small such that they take the market supply and demand of credits

as given.

CAFC credits are determined by the gap between the average compliance level of fuel

consumption and the corporate average fuel consumption. Firms earn positive CAFC credits

when the average fuel consumption is lower than the compliance level, and vice versa.

The compliance level of fuel consumption is determined by curb weight wj, target fuel
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consumption ēj, and a conversion factor η. The corporate average fuel consumption is the

weighted average of fuel consumption ej, where the weight Wj = 1 for gasoline vehicles and

Wj > 1 for electric vehicles (see Appendix B.1 for details of Wj).

NEV credits are determined by car attributes xj, including range, battery energy density,

and electricity consumption; the volume of gasoline-vehicle production Qg; and the target

factor γ. Appendix B.2 summarizes details of positive NEV credit calculation based on car

attributes. γ increases over time (see Figure B4). Notably, only firms with gasoline-vehicle

production exceeding 30,000 units are subject to the negative NEV credit. However, the target

factor applies to total gasoline-vehicle production rather than only the incremental part above

30,000 units. Therefore, there is a discontinuity in the incentive to produce an extra unit of

gasoline vehicle at the threshold.

Take one step backward, given the optimal strategy to maximize profit with a given

product fleet, the profit maximization problem of firms regarding the composition of product

fleet can be written as:

max
J f y

π f y ≡ π̃ f y(J f y)− C f y(| J f y |)

where C f y is the cost of adjusting the product fleet according to the number of products. We

denote |J| as the measure of product fleet. We define

C f y(| J f y |) = S f y · z f y + C̃ f y(| J f y |)

where z f y is an indicator of firm f introducing EV products for the first time in period y.

S f y is a firm-specific lump-sum cost of building EV capacity. C̃ f y is convex, increasing, and

non-negative in the incremental number of products compared to the given product fleet (i.e.,

| J f y | − | J f ,y−1 |).13 Under this definition, reducing the number of products save costs for the

firm. We assume no extra cost for reducing the number of products from the product fleet.

13We omit the conditioning variable | J f ,y−1 | in this equation.
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4.2 Implications

4.2.1 Production, price, and attribute choices

For the profit maximization problem given the product fleet, we first consider the first-order

derivative regarding qj:

∂π̃ f

∂qj
= pj − cj + λ

g
f
∂Lg

l
∂qj

+ λe
f

∂Le
f

∂qj
(1)

where Lg
f and Le

f are the net credit functions of CAFC credit and NEV credit, respectively. For

CAFC credit, we have:

∂Lg
f

∂qj
= −ējη + (1 − Wj

Q
Q̃
)

E
Q̃

+ ej
Q
Q̃

where Q̃ ≡ ∑j Wjqj is the weighted production for CAFC calculation, and E ≡ ∑j ejqj is the

actual fuel consumption.

For NEV credit, we have:

∂Le
f

∂qj

∣∣∣∣∣
Qg↑Q̄g

=


k j, j ∈ EV,

0, j ∈ GV,

∂Le
f

∂qj

∣∣∣∣∣∣∣∣∣∣
Qg↓Q̄g

=


k j, j ∈ EV,

−γ, j ∈ GV.

Defining τ as the tax burden of the dual-credit policy imposed on one additional unit of

product:

τj = −λ
g
f

∂Lg
f

∂qj
− λe

f

∂Le
f

∂qj
,

we draw the following implication:

Implication I: The tax burden of the dual-credit policy imposed on a gasoline vehicle is always

larger than that on an electric vehicle.

The argument is straightforward. Producing a gasoline vehicle generates an ambiguous

impact on the CAFC credit, depending on the vehicle’s fuel consumption level. However,

it certainly generates negative NEV credits when total gasoline-vehicle production exceeds
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30,000 units. By contrast, producing an electric vehicle always lowers average fuel

consumption and generates non-negative NEV credits. Moreover, electric vehicles lower

average fuel consumption more effectively than any gasoline vehicle with positive fuel

consumption. Therefore, the dual-credit policy implicitly taxes gasoline vehicles and

subsidizes electric vehicles (Reynaert, 2021), creating a price wedge between these two types

of vehicles.

In addition, when we look at the production decisions of firms, we can draw the following

two implications:

Implication II: There is a divergence in gasoline-vehicle production: medium-size producers reduce

GV production, while large producers increase it.

There is a discontinuity (−γQ̄g) in the incentive to produce GVs at the threshold. As shown

in Appendix D.1, assuming that increasing GV production is costly, there exists Q̃g > Q̄g

such that those with Qg < Q̃g will decrease Qg to below Q̄g. At the same time, large GV

producers may increase GV production to clear the market. The logic is that those who would

otherwise buy gasoline vehicles that are no longer available will switch to close substitutes,

that is, gasoline vehicles by other producers.

Implication III: There is a strong incentive for GV producers to make EVs to reduce CAFC.

Compared with the pre-policy period, the incentive to lower fuel consumption for GVs is weaker.

To see the impact of producing one unit of a gasoline vehicle versus an electric vehicle,

consider the case where a firm produces only gasoline vehicles and existing gasoline vehicles

have fuel consumption equal to the compliance level. Then we have Q/Q̃ = 1, E/Q̃ = ējη. For

a fuel-saving GV with ej = 0.9× ējη,
∂Lg

f
∂qj

= −0.9× ējη. For an EV with ej = 0,
∂Lg

f
∂qj

= −Wj ējη. In

2017, Wj = 5, meaning that producing one EV is equivalent to 50 fuel-saving GVs in reducing

CAFC. This example highlights the advantages of producing EVs in driving down CAFC: EVs

not only have zero fuel consumption but also have a large weighting factor that amplifies their

impact on CAFC.
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Regarding price and attribute choices, we can derive the following first-order derivatives:

∂L
∂p

=
(

1 + λ
g
f ◦ ∇pLg ◦ ∆p + λe

f ◦ ∇pLe ◦ ∆p

)
◦ q︸ ︷︷ ︸

margin effect

+ Φ ◦ ∆pm︸ ︷︷ ︸
market share effect

∂L
∂x

=

 −c′x︸︷︷︸
cost effect

+ λ
g
f ◦ ∇xLg ◦ ∆x + λe

f ◦ ∇xLe ◦ ∆x︸ ︷︷ ︸
credit effect

 ◦ q + Φ ◦ ∆xm︸ ︷︷ ︸
market share effect

where L is the Lagrangian. ∇kL is the Jacobian matrix of first-order derivatives of credit

function L with respect to k = p, x. ∆k is a J × J matrix in which the i − j element indicates the

derivative of market share si with respect to k j = pj, xj. ◦ is defined as the Hadamard product.

Φ is ownership matrix, and m = p − c − τ is the mark up of J vehicle.

The first-order derivative of price shows the trade-off between increased markup of

vehicles and the losses from reduced market shares. The first-order derivative of attributes

shows the trade-off between increased marginal cost and the benefits from credit earnings and

increased market shares (supposing consumers have positive willingness-to-pay for improved

attributes). In a multinomial logit type of demand as here, we can write out the elements in ∆

as the following:

∂sk

∂pj
=


−αsj

(
1 − sj

)
, k = j

αsksj, k ̸= j

∂sk

∂xj
=


βxsj

(
1 − sj

)
, k = j

−βxsksj, k ̸= j

Cannibalization Effect: The increase of market share of vehicle j always happen in

accompany with the reduction of market shares of other existing products.

Implication IV: Newcomers introduce higher-quality EVs, especially in attributes valued by

consumers but not accounted for in credit calculation.

Proof is in Appendix D.1.

Intuitively, from the profit-maximization problem, there are three incentives for producing

EVs: (1) reducing CAFC, (2) earning NEV credits, and (3) boosting sales. These map to three
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distinct impacts on attribute choice. For (1), any EV works the same in reducing CAFC; there

is no incentive to improve attributes. For (2), the incentive is to improve only those attributes

included in the credit calculation. For (3), there is an incentive to improve all attributes valued

by consumers. Because of cannibalization effect, all else equal, newcomers have stronger

incentives to produce higher-quality EVs, particularly in attributes valued by consumers but

not included in the credit calculation. For incumbents, EVs compete with their own existing

GVs, reducing incentives to improve attributes valued only by consumers and not included in

the credit calculation. That is, incumbents mainly increase EV production in response to the

policy-driven price wedge τ.

4.2.2 Product fleet adjustment

Finally, for the step of choosing the optimal size of product fleet, we can get the following

first-order derivative:

∂L
∂|J| = qk

[
mk − IΦ ◦ ∆qm

]︸ ︷︷ ︸
market stealing + cannibalization

− C′︸︷︷︸
adjustment cost

We denote the added product to be k. The net margin of introducing a new product is the

mark up generated from market stealing minus the cannibalization effect from reduced sales

of other products that belongs to the same firm, which is measured as the weighted average of

mark ups of the affected products with respect to the substitute elasticity. The size of product

fleet increases until the net margin of introducing a new product equals to the increase in

adjustment cost.

4.2.3 Cost minimization problem

To dig further into the impact of the dual-credit policy on firms’ input choices, we now focus

on c′x, a key determinant of firm strategy regarding the attribute choices. We assume that there

are multiple types of attributes that are characterized by a. Each type of attribute belongs to
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a technology domain s(a). Firms solve the cost minimization problem of achieving xa level of

each attribute type a:

min
{hn}N

1 ,ma

ca = ∑
n

w f ,nhn + r f ma

s.t. Aβa
f ,s(a)

(
∏

n
hγan

n

)
mδa

a ≥ xa,

Notably, there are N types of workers that jointly determine the production of each type of

attribute. The output elasticity of type n worker in producing type a attribute is γan. Firms are

heterogeneous in their domain-specific technology A f ,s and the factor prices w f ,n, r f .

For simplicity, we assume constant return to scale of the production function (∑τ γaτ +

δa = 1). Then, with simple algebra (see details in Appendix D.1), we have the optimal cost of

achieving xa to be

c∗xa
= Ka · A−βa

f ,s(a) · rδa
f ·
(

∏
τ

wγaτ

f ,τ

)
· xa

where Ka ≡
(

∏τ γ
−γaτ
aτ

)
δ−δa

a is a constant.

Accordingly, the optimal factor demand can be written as:

h∗aτ =
γaτca

w f ,τ
, m∗

a =
δaca

r f

Based on results above, we can get the following implications.

Implication V: The marginal cost of improving a given attribute is negatively correlated with

domain-specific technology endowment. Accordingly, the optimal attribute choice is positively

correlated with domain-specific technology endowment.

Implication VI: The optimal demand for a specific type of talent depends on attribute choice, output

elasticity, and wages.

Furthermore, we argue that firms would locate in places with a larger supply of talent that

fits their attribute choices because a larger labor supply implies lower wages, ceteris paribus.

26



5 Empirical Strategy and Identification

Our main empirical strategies are the difference-in-differences and event-study designs.

Because the dual-credit policy is implemented at the national level with no time differences

in implementation, we cannot leverage regional variations or time variations in roll-out in

our analysis. Moreover, the policy affects all active car manufacturers, so there is no never-

treated group. Therefore, we compare car manufacturers with different levels of exposure to

the policy based on their pre-determined characteristics. According to different margins of the

policy setting, there are different measures of exposure used in analysis. We assess parallel

pre-trends between the high- and low-exposure groups to establish causality. The identifying

assumption is that production behavior across firms or products will be on the parallel trend

in the absence of the policy shock. We show that this assumption is reasonable in the following

sections. In addition, we leverage unique policy designs, changes in the policy over time, as

well as exogenous shocks to the automotive industry to provide further evidence on the causal

impacts of the policy (see Section 6.4 for details).

5.1 Step I Empirical Strategies

Implication I implies that the dual-credit policy imposes a larger tax burden on gasoline

vehicles than on electric vehicles, leading to a price wedge between the two types. We estimate

the following model to test this prediction:

ln(pjt) =
6

∑
m=−4,m ̸=−1

γm · EVj × tm + δ f + λt + βX · Xjt + ε jt (2)

where pjt is the manufacturer’s suggested retail price (MSRP) of product j in period t.

m indicates periods relative to the year of policy shock, defined as 2018, the year of

implementation. EVj is a dummy indicating that car j is an EV. We control for a set of attributes

Xjt, including curb weight, horsepower, maximum speed, body type (e.g., sedan, SUV, or
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MPV), cruise control type, parking-assistance type, and indicators for antilock braking, auto

hold, hill-start assist, and related features. Firm fixed effects δ f captures any firm-specific time

invariant factors affecting prices, such as the pricing strategy. Year fixed effects λt capture

the general time trend in the change of vehicle price. The error term is denoted by ε jt. The

coefficients of interest are γm, which capture the average price gap between GVs and EVs in

period m.

Implication II implies a divergence in manufacturers’ incentives of making GVs, which

stems from the threshold for obligatory for the NEV credit target. Here we conduct two

analyses to see how it affects GV production allocation. First, we calculate average GV

production in the pre-policy period (2013–2017) and classify firms with average GV production

above 30,000 as the treatment group. We then test whether these firms are more likely to

reduce GV production to below 30,000 units after the policy shock.14 The empirical model is

as follows:

1(Qg
f t > Q̄g) =

6

∑
m=−5,m ̸=−1

γm · Above f × tm + δ f + λt + ε f t (3)

where 1(Qg
f t > Q̄g) indicates whether firm f has GV production above 30,000. Above f

indicates whether firm f has pre-period average GV production above 30,000 units. We control

for firm fixed effects δ f and year fixed effects λt. The error term is denoted by ε f t. The

coefficient of interests are γm, which should be negative for m ≥ 0 when the policy reduces the

incentives of above-threshold GV producers to to produce extra GVs.

Second, such drop in GV production should be mainly driven by those who are close to the

threshold level. We estimate the following model for firms with above-threshold pre-period

GV production to test this prediction:

ln(Qg
f t) =

6

∑
m=−5,m ̸=−1

γm · Large f × tm + δ f + λt + ε f t (4)

14Because there are only about 100 active car manufacturers per year, we do not observe many firms producing

close to 30,000 GVs, limiting our ability to detect bunching of production at the threshold.
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where ln(Qg
f t) is the log of GV production for firm f in period t. Large f is a dummy variable

indicating if the pre-period average GV production of firm f is above the median level among

firms in the regression sample. Other notation follows Equation (3). The coefficient of interests

are γm, which should be positive for m ≥ 0 when the larger manufacturers may increase GV

production relative to smaller ones.

Implication III predicts that the fuel economy improvement slows because of the present of

EV production as an alternative strategy to comply with the regulation. To test this prediction,

we first calculate each firm’s ratio of CAFC to the compliance level in the pre-policy period

based solely on GV fuel consumption. We then classify firms with a ratio above the median

(i.e., higher fuel consumption relative to the compliance level) as the treatment group and those

below the median as the control group. Finally, we estimate the following empirical models:

Yf t = β0 + β1 · HighCAFC f t × Postt + δ f + λt + ε f t

Yj( f )t = β0 + β1 · HighCAFC f t × Postt + βXXjt + δ f + λt + ε jt

(5)

We estimate two models, one at the firm level and the other at the product level. For the

firm-level regression, we consider two outcomes Yf t: the share of EVs in total production and

the ratio of CAFC to the firm-average compliance level based on GVs. For the product-level

regression, we also consider two outcomes Yj( f )t: an indicator for j being an EV and the fuel

consumption of j, conditional on j being a GV. We control for firm, year, and product fixed

effects, and product characteristics accordingly. The coefficient of interest β1 captures the

relative response in production of the high-fuel-consumption groups.

In Implication IV, we propose that newcomers have greater incentives to improve car

attributes because they are not subject to cannibalization effects like incumbents. This is tested

by investigating the quality of vehicles produced by incumbents and newcomers. We estimate
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the following model:

Yj( f )t = β0 + β1 · Newcomer f + βXXjt + λt + ε jt (6)

where Yj( f )t denotes a set of attributes describing the driving performance and the intelligence

of product j in period t; Newcomer f indicates whether firm f entered the market in or after

2018. Xjt is a vector of basic attributes, including curb weight and its square, body type, battery

type, and log price for the autohome.com sample. We also control for year fixed effects λt.

Here, we estimate an OLS regression on repeated cross-sectional data without using a panel

structure or a DID approach. This is because there are no pre-period data for newcomers, and

newcomer status is time-invariant. Therefore, the coefficient of interest β1 is only correlational.

It reflects both endogenous selection into entry and the incentive effect from the absence

of cannibalization effect. Suppose the policy shock endogenously induces firms with a

comparative advantage in EVs to enter, which is likely the case; newcomers will tend to have a

lower marginal cost of making EVs and will thus choose higher attribute levels, ceteris paribus.

We cannot distinguish these two sources of variation with reduced-form analysis. The results

provide only suggestive evidence of the incentive effect. That said, as shown below in Section

6, the larger effects from attributes that are not included in credit calculation but more salient to

consumers, compared with those affecting NEV credit calculation but not salient to consumers,

are in line with our prediction in Implication IV and highlight the incentive effect.

5.2 Step II Empirical Strategies

Implications V and VI suggest that firms would turn to EV production after the policy shock.

Accordingly, we predict that after the implementation of the dual-credit policy, innovation

in EVs—relative to GVs—will increase, and this increase will occur regardless of a firm’s

existing technology endowment. Empirically, the dual-credit policy will lead to weaker path
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dependence in innovation and a convergence in innovation trajectories. We estimate the

following model to test this prediction using a Poisson pseudo-maximum-likelihood (PPML)

method:

Pat f t = exp
(

β0 + β1 · K f ,t−1 × Pret + β2 · K f ,t−1 × Postt + λ f + τt + ε f t
)

(7)

where Pat f t is the number of patents firm f applied for in period t. K f ,t−1 is firm f ’s patent

stock in period t − 1, which measures technology endowment and knowledge. The correlation

between lagged patent stock and new patents captures path dependence in innovation. We

allow for differential path dependence between pre- and post-policy-shock periods, measured

by β1 and β2, respectively. Pret equals one for t < 2018; Postt equals one for t ≥ 2018. We

expect β1 > β2.

Moreover, Implication V indicates that newcomers start working on automobile-related

innovation prior to market entry. The logic is as follows: newcomers induced to enter the

market have no incentives to conduct automobile-related innovation while they remain out

of the market; after the policy shock, they switch to automobile-related innovation because

it lowers marginal cost. Only newcomers who would have entered in the absence of the

dual-credit policy may have been preparing in advance. To gauge the prevalence of these

“ever-newcomers,” we estimate the following event-study model:

S f t = β0 +
2024

∑
t=2013,t ̸=2017

βt · Newcomer f × Tt + λ f + τt + ε f t (8)

where S f t is the share of automobile-related patent stock among all patents. Automobile-related

patents include the three types defined above (EV-, GV-, and intelligence-related). The

coefficient of interest is βt. We expect βt to be significantly positive after the policy shock

(i.e., t > 2017), even though these firms may not yet be in the market.

To test how talent allocation responds to firms’ production composition, we compare
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worker composition between groups that mainly focus on GV production and those that

mainly focus on EV production. Specifically, we calculate the share of new EV trims among all

new products for each group and define those with a share above the median as EV-focused

groups and the others as GV-focused groups. We then run the following regression at the

individual-year level:

Yi( f )t =
2024

∑
t=2012,t ̸=2017

γt · EV Focused f × Tt + αi + λt + ε it (9)

where each observation is a job record for individual i working in firm f in period t. Yi( f )t is an

indicator that the job is located in a first-tier city in China (Beijing, Shanghai, Guangzhou,

or Shenzhen). These four cities are the most developed in China and host the largest

concentrations of high-skilled and highly educated workers. We control for worker fixed

effects αi and year fixed effects λt.

6 Empirical Result I: Production Responses to the Policy

In this section, we test Implications I–IV derived in Section 4.

6.1 Overall Responses

Results of estimating Equation (2) are shown in Figure 5. Before the policy shock, the relative

price between GVs and EVs is stable across years and statistically indistinguishable from the

omitted period (2017). This absence of a pre-trend supports the parallel-trends assumption for

identifying the causal effect of the dual-credit policy. In the year of policy implementation, the

relative price of EVs fell by more than 11 log points (significant at the 10% level). The relative

price of EVs continued to decline thereafter, reaching about 59 log points below at the end of

the studied period.

The price change comes from different channels. First, pass-through from reduced
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Figure 5: Policy Effect on the Relative Price of EV

Notes: Figure shows the event-study results of the dual-credit policy on the relative price of EVs. The year of
policy shock is 2018. Each circle indicates the point estimations of the treatment effect (i.e., the coefficient of
EVj × tm in Equations (2)). Each vertical dashed line indicates the 95% confidence interval of the treatment effect.

subsidies to reduced price. Second, price wedge rooted from the shadow price of credits.

Third, other potential channels including other policies, the entry of competitive newcomers,

learning-by-doing, and technological breakthrough in related-fields, etc. Here, the second one

is of interest because it captures the direct impact of the dual-credit policy.15

To estimate the shadow price of credits, in Appendix E, we follow the usual practice in the

literature (Barwick et al., 2024a; Hu et al., 2025) to structurally estimate the markup of vehicles

and back out the marginal cost and policy-induced price wedge.16 The procedure consists of

three steps: (1) estimate the coefficient of price on utility with multinomial Logit model, based

on the observed prices, attributes, and sales; (2) estimate the markup and the sum of marginal

cost and credit value of vehicles, based on firm’s profit maximization conditions; (3) estimate

the shadow price of credits based on the sum of marginal cost and credit value, observed car

15The third channel may also reflect the indirect impacts of the policy, but such indirect impacts are difficult to be

clearly quantified. Results in later sections do imply that the policy introduced more competitive newcomers into

the market.

16One caveat of this practice is that, due to data limitation, we impose homogeneous demand for consumers, which

could be too strong to hold.
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and manufacturer characteristics, and credits determined by the policy.

Figure 6 shows the decomposition results. The price faced by consumers net of purchase

subsidies (referred to as consumer cost) is also decreasing overtime, but with a smaller

magnitude in most years after the policy shock. The gap between decrease in MSRP and that of

consumer cost indicates that the phase-out of subsidies indeed drives down the relative MSRP

of EVs, compared with GVs. Its explanatory power increases overtimes, consistent with the

gradual phase-out process. The removal of national subsidy explains about 1/5 of the total

decrease in the post-policy shock period. We can further subtract the shadow value of credits

from the consumer cost for each vehicle. Comparing the decrease in the consumer cost and

that of the consumer cost net of credit value, we can see that the policy-induced price wedge

explains another 1/4 of the decrease in the relative price of EVs. Finally, the consumer cost

net of credit value also drops significantly after the policy shock, indicating that other factors

explain the rest 55% of decrease in EV price.

6.2 Incumbent Responses

In this subsection, we first focus on the responses of incumbent firms.

6.2.1 Concentration of GV production

Results of estimating Equation (3) are shown in panel A of Figure 7. Before the policy

shock, there is no significant pre-trend in the GV production gap between large and smaller

manufacturers. The probability of GV production exceeding 30,000 for the treatment group

dropped significantly by more than 30 log points to around 0.65 after three years of the policy

shock.

Results of estimating Equation (4) are shown in panel B of Figure 7. Again, we do not

observe any statistically significant pre-trend in GV production. After the policy shock, firms

with above-median pre-policy GV production relatively increase their GV production. This
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Figure 6: Policy Effect on the Relative Price of EV - Decomposition

Notes: Figure shows the event-study results of the dual-credit policy on the relative price of EVs. The year of
policy shock is 2018. Each marker indicates the point estimations of the treatment effect for different dependent
variables. Circles indicate effects on the log MSRP. Triangles indicate the effects on the log consumer cost, which is
calculated as:

Consumer Cost = MSRP × 1 + value-added tax rate + purchase tax rate
1 + value-added tax rate

− Subsidy

Diamonds indicate effects on the log consumer cost net of credit values,where credit values are capture by

−τ̂j = λ̂
g
j × CAFC creditj + λ̂e

j × NEV creditj

The gap between circles and triangles (i.e., the green area) indicates the role of subsidy phase-out in explaining the
decrease of relative price of EVs. The gap between triangles and diamonds (i.e., the blue area) indicates the role of
credit value in explaining the decrease of EV relative price. The gap between diamonds and zero (i.e., the red area)
indicates the role of other factors in explaining the decrease of EV relative price. Each vertical dashed line
indicates the 95% confidence interval of the treatment effect.
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result is in line with our prediction in Implication II.
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Figure 7: Policy Effects on GV Production

Notes: The figure shows event-study results of the dual-credit policy on GV production. The policy shock occurs
in 2018. Each circle indicates the point estimate of the treatment effect (i.e., the coefficients on Above f × tm and
Large f × tm in Equations (3) and (4), respectively). Vertical dashed lines indicate 95% confidence intervals.

6.2.2 Reduced effort in improving fuel economy

Implication III focuses on the policy’s impact on attributes of gasoline vehicles. Before the

dual-credit policy, CAFC regulation was imposed on individual firms. There was no trading of

credits, and firms had to meet the regulatory requirements themselves. After the introduction

of the dual-credit policy, firms could compensate credit deficits by purchasing credits from

other firms. In this case, CAFC regulation is no longer binding prior to credit trading.

This is acknowledged in Figure 8, where we observe the share of firms just meeting the

regulatory target (i.e., the fuel consumption level on compliance level ratio is just below 1)

to be significantly higher than just missing it before the policy shock, while such bunching

disappears thereafter.

With credit trading, firms’ optimal strategy equates the marginal cost of compliance among

three strategies: improving the fuel economy of GVs, producing more EVs, and buying credits

from others. Substitution effect across strategies predicts that firms will put less effort into

improving the fuel economy of GVs.

Results of estimating Equation (5) are shown in Table 1. As shown in columns (1) and
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Figure 8: Bunching of Distance to Compliance Level

Notes: This figure shows the densities of the ratio of CAFC to the firm-average compliance level in a ±5% window
around the threshold. Gray bars denote the pre-policy period; blue bars denote the post-policy period. Values
below 1 indicate compliance; values above 1 indicate shortfall. Both CAFC and firm-average compliance levels are
drawn from administrative records.

(3), firms with pre-period CAFC above the median, compared with those below, experience a

larger increase in the share of EV production and introduce more new EVs following the policy

shock. At the same time, these firms do not put more effort into improving the fuel economy

of GVs (see columns (2) and (4)).

Consequently, the steady decline in GV fuel consumption slows significantly after the

policy shock (see Appendix Figure F1). This result does not imply that the dual-credit

policy worsens environmental outcomes, because EV adoption reduces fuel consumption. A

precise and comprehensive accounting of the environmental impacts of the dual-credit policy

involves not only GV fuel consumption and EV electricity use, but also the impacts of vehicle

manufacturing and electricity production, which is beyond the scope of this research.

6.3 Newcomer Responses

As shown in Figure C2, car manufacturers entering the market after the policy shock are

important. Neglecting newcomers’ production behavior would not provide a complete picture
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Table 1: Policy Impacts on Compliance Strategy

Firm-level Product-level

(1) (2) (3) (4)
VARIABLES Share of EV CAFC/

Compliance
EV Fuel

Consumption

Above-median pre-period
Real CAFC × Post

0.067** -0.006 0.130*** 0.210

(0.032) (0.024) (0.040) (0.147)

Mean 0.145 1.150 0.265 7.128
Observations 931 1,219 16,876 12,311
R-squared 0.695 0.716 0.337 0.434
Firm FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

Notes: Table shows the estimation result of Equation (5). In column (2), CAFC are calculated based solely on
gasoline vehicles. Numbers of observations differ between columns (1) and (2) because the production of EV is
only available after 2016 while the calculation of CAFC and compliance level are available from 2013 onwards.
Numbers of observations differ across columns (3) and (4) because in column (4) we only focus on gasoline
vehicles. Robust standard errors clustered at the firm level are in parentheses. ***, **, and * denote significance
at the 1, 5, and 10 percent level, respectively.

of how the dual-credit policy affects the market.

To test the prediction from Implication IV, we leverage two datasets with detailed

car-attribute information to estimate Equation (6): the new car product data from

multiple administrative data sources and the autohome.com sample. The first data set

includes product-level credits according to the NEV credit formula. Further, we compare

the driving-related performance of EVs—range, battery capacity, battery energy density,

maximum speed, electricity consumption, etc. The second data have more missing attribute

information, but it provides a much larger set of attributes related to vehicle intelligence,

such as fast-charging support, numbers of cameras and sensors for autonomous driving,

system-on-chip, and operating-system performance. These measures are not included in credit

calculations but are important for evaluating the quality and attractiveness of EVs.

Results using administrative data are shown in Panel A of Table 2. Newcomers make EVs

with comparable NEV credit per vehicle to those made by incumbents (col. (1)). However,

EVs made by newcomers offer significantly longer range (col. (2)), even when additional

range does not yield extra NEV credits (col. (3)). For electricity consumption, which is not
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salient to consumers, EVs made by newcomers do not have an advantage (col. (4)). An

interesting comparison lies in columns (5) and (6): the energy density of cars is comparable

between newcomers and incumbents, but battery capacity is 4 log points larger for EVs made

by newcomers. The differential results between attributes that affect NEV credit calculation

but are not salient to consumers and attributes that are not included in credit calculation but

are more salient to consumers are in line with our prediction in Implication III, highlighting

the incentive effect. Finally, we find that newcomers make EVs with a higher maximum speed.

Maximum speed can be regarded as a measure of EV driving performance because there is a

trade-off between maximum speed and range. Newcomers make EVs with both longer range

and higher maximum speed, which shows their advantages in EV-related technology.

Results using the autohome.com data are shown in Panel B of Table 2. EVs made by

newcomers have faster 0–100 acceleration; have more cameras for autonomous driving; are

more likely to support fast charging; are more frequently equipped with a system-on-chip

(SoC); and offer greater operating system (OS) storage.

6.4 Direct Evidence of Production Responses

So far, our empirical results rely on either a difference-in-differences design or a cross-sectional

comparison. Both are subject to potential endogeneity concerns. Specifically, simultaneous

shocks could contaminate the effects of the dual-credit policy. In this subsection, we leverage

exogenous shocks to the dual-credit policy to provide more direct evidence on the policy’s

effects, highlighting the role of specific policy margins in firms’ behavior and outcomes.

6.4.1 COVID shock and switch to EV production

First, we leverage the exogenous COVID shock on car manufacturers to show that the

dual-credit policy generates a strong incentive for firms to switch to EV production,

conditional on the implicit subsidy toward EVs.
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Table 2: Incumbents vs. Newcomers on Car Attributes

Panel A: Credit and Driving Performance
(1) (2) (3) (4) (5) (6) (7)

VARIABLES NEV
Credit

Range Range
> limit

EC ED Capacity Max.
Speed

Newcomers 0.0901 0.0589*** 0.0591* -0.00553 -0.0118 0.0404** 0.0435**
(0.0578) (0.0216) (0.0338) (0.0139) (0.0102) (0.0201) (0.0177)

Mean 2.894 5.641 0.528 2.665 4.900 3.697 5.003
Observations 3,561 5,145 3,571 3,383 5,102 5,102 5,553
R-squared 0.858 0.915 0.532 0.648 0.765 0.919 0.818

Panel B: Vehicle Intelligence
(1) (2) (3) (4) (5) (6)

VARIABLES 0-100
Acceleration

Camera Sensor Fast
Charging

SoC OS
Storage

Newcomers -0.573** 0.948** 0.267 0.0659* 0.0668* 0.328***
(0.240) (0.382) (0.297) (0.0343) (0.0380) (0.121)

Mean 7.731 5.395 7.869 0.609 0.155 4.761
Observations 15,628 14,058 13,605 32,638 32,638 4,164
R-squared 0.721 0.532 0.617 0.560 0.391 0.548

Car Category Yes Yes Yes Yes Yes Yes Yes
Energy Type Yes Yes Yes Yes Yes Yes Yes
Release Year Yes Yes Yes Yes Yes Yes Yes

Notes: The table shows estimation results for Equation (6). In Panel A, we use the administrative new-car
product data, while in Panel B, we use the autohome.com data. Dependent variables in Panel A, columns (2)
and (4)–(7) are log-transformed. Dependent variables in Panel B, columns (2) and (3) are counts, and in column
(4) is a dummy indicating whether an EV supports fast charging. “Range > limit” is a dummy indicating
that range is above the upper bound, so higher range does not yield additional NEV credits. “EC” stands for
electricity consumption; “ED” stands for battery energy density; “Capacity” stands for battery energy capacity.
“SoC” stands for system-on-chip. We control for curb weight and its square term, and the number of seats in
Panel A; log price, curb weight and its square term, and calendar year fixed effects in Panel B. The number of
observations differs across columns because of missing data. Robust standard errors clustered at the firm level
are in parentheses. ***, **, and * denote significance at the 1, 5, and 10 percent levels, respectively.

In 2020, COVID severely affected production, sales, and innovation in the automotive

industry, resulting in a large deficit in CAFC credits. As shown in Appendix Figure C3,

market-level CAFC credits turned negative for the first time in 2020.

This large credit deficit implies that the prices of both CAFC and NEV credits would rise

sharply in 2020. To help firms recover from the COVID shock and ease their credit-balance

burden, in February 2021 the Chinese government unexpectedly allowed firms to use NEV

credits generated in 2021 to compensate for 2020 NEV credit deficits. Although only NEV
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credits were explicitly affected by this intervention, the offsetting rules between CAFC and

NEV credits imply that the intervention also affects CAFC credit balances.

Given expectations of high credit prices, firms hit hard by the COVID shock had strong

incentives to increase EV production in 2021, earn more NEV credits, and reduce credit costs.

If there were no credit-trading system, and if CAFC credit deficits cannot be compensated

by NEV credits, there would be no such adjustment. Therefore, observing this adjustment

points to the dual-credit policy’s design. Moreover, firms’ adjustments in 2021 are plausibly

exogenous for two reasons: first, the COVID shock is exogenous to firms; second, permission

to use 2021 NEV credits to offset 2020 deficits was unexpected.

To detect firms’ production adjustments, we estimate the relationship between the change

in CAFC credits between t− 2 and t− 1 (∆CAFCt−1) and the change in EV production between

t − 1 and t (∆EVt). In years other than 2021, we expect a negligible relationship because credits

in t cannot offset negative credits in t − 1. In 2021, however, we expect a strong negative

relationship between the two.

Results are shown in Table 3. Comparing columns (1) and (2), the coefficient is significantly

negative in 2021 but is not significantly different from zero in other years. In columns (3)–(5),

the coefficient of interest is the interaction between lagged ∆CAFC and an indicator for 2021.

Across three specifications with different controls, we consistently find a significantly negative

interaction coefficient. These results align with our prediction and suggest that a positive NEV

credit price induces firms to switch to EV production. Given the mean of lagged ∆CAFC being

31,104.11 and the coefficient in column (1), the response to credit shocks induces a 26% of

change in EV production on average.17

17Calculated as 31,104.11×(-0.0645)/7756 = 0.259.
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Table 3: Adjustment in EV Production

(1) (2) (3) (4) (5)
Sample In 2021 Not in

2021
All All All

VARIABLES ∆EV ∆EV ∆EV ∆EV ∆EV

Lag ∆CAFC -0.0645*** 0.0137 0.0142 0.0137 0.0273
(0.0111) (0.0122) (0.0142) (0.0122) (0.0389)

Lag ∆CAFC × Yr2021 -0.0729*** -0.0782*** -0.0464**
(0.0188) (0.0166) (0.0232)

Mean 7756 3525 4354 4354 2255
Observations 76 312 388 388 217
R-squared 0.616 0.027 0.104 0.124 0.747
Firm FE No No No No Yes
Year FE No Yes No Yes Yes

Notes: Table shows the estimation result of firms’ EV production change between periods t and t − 1 with
respect to the change in CAFC credits between t − 1 and t − 2. Observations are at firm-year level. In column
(1), we only look use the data in 2021. In column (2), we use the data excluding year 2021. In columns (3) to
(5), we use the whole sample. Robust standard errors clustered at the firm level are in parentheses. ***, **, and
* denote significance at the 1, 5, and 10 percent level, respectively.

6.4.2 Policy revisions and attribute choices

Second, we leverage policy revisions in 2021 and 2023 to evaluate how the credit-calculation

rules affect firms’ attribute choices. Specifically, we expect firms to improve attributes included

in the credit calculation when the criteria are tightened.

The empirical strategy is as follows. First, for any given EV, we calculate its NEV credits

under the three versions of the credit-calculation formula (i.e., the 2018, 2021, and 2023

versions, defined by implementation year).

Second, under each set of criteria, we calculate the distance between the credit and the

upper bound, measured as

˜Distance
m
j = (NEVm

j − NEVm
)/NEVm

where NEVm
j is the NEV credit of EV j evaluated under the credit-calculation criteria in month

m, and NEVm is the upper bound of NEV credit per vehicle in month m.

Third, to convert the data into a panel structure, we average the distance and car attributes
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in each month m and estimate the following empirical model:

x̄ f ,m − x̄ f ,m−12 = β
(

D̃istance
m
f ,m−12–Distance f ,m−12

)
+ δ f + ε f m (10)

where ˜Distance
m
f ,m−12 is the counterfactual distance of all products of firm f in month m −

12 evaluated under the month-m criteria. x f ,m and Distance f ,m are the average attribute and

distance for firm f in month m under the month-m criteria. Specifically, we compute x f ,m and

Distance f ,m using data from [m − 6, m] to avoid having too few observations at the monthly

level. To avoid potential contamination, we use only data starting seven months after each

formula change.

The logic is that, holding attributes fixed, a larger reduction in credits after a formula

change implies stronger incentives for firms to improve those attributes. With firm fixed

effects, these responses are exogenously driven by changes in the calculation formula.

Results are shown in Table 4. For range, energy capacity, energy density, and electricity

consumption—attributes included in the credit calculation—all coefficients are negative, and

three are large in magnitude and significant at the 1% level. Placebo attributes such as

maximum speed and vehicle length are unaffected.

Table 4: Adjustment in Attributes with Respect to Policy Changes

(1) (2) (3) (4) (5) (6)
VARIABLES ∆Range ∆Capacity ∆ED ∆EC ∆Speed ∆Length

∆Distance -0.334*** -0.264*** -0.164*** -0.0753 0.0240 -0.0162
(0.0784) (0.0844) (0.0318) (0.0805) (0.0236) (0.0138)

Mean 0.142 0.143 0.0527 0.0165 0.0293 0.0104
Observations 4,863 4,861 4,861 2,759 4,933 4,559
R-squared 0.163 0.151 0.155 0.164 0.147 0.201
Firm FE Yes Yes Yes Yes Yes Yes

Notes: Table shows the estimation result of Equation (10). Dependent variables are calculated at firm level.
“ED” means energy density of battery, “EC” means electricity consumption. “speed” stands for maximum
speed of an EV. Numbers of observations are different across columns because of missing data. Robust
standard errors clustered at the firm level are in parentheses. ***, **, and * denote significance at the 1, 5,
and 10 percent level, respectively.
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7 Empirical Result II: Input Responses to the Policy

To further test Implications V–VI, we turn to firms’ input markets. Specifically, we focus on

technology and human capital.

7.1 Innovation

Table 5 reports estimate of Equation (7). For each patent type, the correlation between lagged

patent stock and the number of new patents is larger in the pre-period than in the post-period.

Specifically, for EV-related and intelligence-related innovation, path dependence vanishes in

the post-period, which is in line with the dual-credit policy pushing the industry toward these

fields. The coefficient for GV-related patents remains positive and is significant at the 10%

level, as expected because firms focusing on EV production would not switch to GV-related

innovation.

Table 5: Path Dependence in Innovation

(1) (2) (3)
VARIABLES EV-related GV-related Intelligence-

related

l.Stock of EV-related Patents×Pre 0.156**
(0.0729)

l.Stock of EV-related Patents×Post -0.0394
(0.0267)

l.Stock of GV-related Patents×Pre 0.240***
(0.0720)

l.Stock of GV-related Patents×Post 0.182*
(0.0980)

l.Stock of Intelligence-related Patents×Pre 0.275**
(0.107)

l.Stock of Intelligence-related Patents×Post -0.0394
(0.0591)

Mean 4.095 5.940 7.850
Observations 6,502 3,957 3,454
Firm Yes Yes Yes
Year Yes Yes Yes

Notes: Table shows the estimation result of Equation (8). Dependent variables are the number of different
types of patents applied in a year. “Pre” means before 2018. “Post” means on or after 2018. Robust standard
errors clustered at the firm level are in parentheses. ***, **, and * denote significance at the 1, 5, and 10 percent
level, respectively.
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Figure 9 shows that newcomers increase innovation in car-related fields immediately after

the policy shock, prior to market entry. This result indicates that the policy induces newcomers

to switch to car-related innovation. It also suggests that “ever-newcomers” are not prevalent

in the data. Instead, newcomers are incentivized by the policy shock to participate in the

automotive industry. Finally, as shown in Appendix Figure F2, newcomers mainly turn to

EV-related innovations and relatively reduce GV-related innovations.
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Figure 9: Event Study of Car-related Innovation of Newcomers

Notes: The figure shows event-study results of the dual-credit policy on newcomers’ car-related innovation. The
policy shock occurs in 2018. Each circle indicates the point estimate of the treatment effect (i.e., the coefficient on
Newcomer f × Tt in Equation (8)). Vertical dashed lines indicate 95% confidence intervals.

7.2 Talent

Finally, we turn to the labor input margin, evaluating how the dual-credit policy affects the

allocation of talent across firms. Following Implication VI, we hypothesize that firms prioritize

hiring specific types of talent according to product composition and attribute choices.

Figure 10 shows the results of estimating Equation (9). After the policy shock, EV-focused

firms are more concentrated in first-tier cities. This is in line with our prediction that firms

will find talents according to their attribute choice and innovation activities. EV-related and
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intelligence-related innovations concentrate in developed regions. Therefore, firms would hire

more talents there.
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Figure 10: Job Spells in First-Tier Cities

Notes: Figure shows the event-study results of the dual-credit policy on EV-focused firms offering jobs in the four
first-tier cities–Beijing, Shanghai, Guangzhou, and Shenzhen. The year of policy shock is 2018. Each circle
indicates the point estimations of the treatment effect. Each vertical dashed line indicates the 95% confidence
interval of the treatment effect.

From the perspective of workers, the change in the supply side of the automotive industry

significantly affect the allocation of workers. First, joining EV-focused firms from non-EV-

focused firms is associated with a significant wage premium of around 5 log points (see

Appendix Table F1). Second, consistent with the positive wage premium, high-skilled workers

are significantly less likely to join GV-focused firms after the policy shock (see Appendix Figure

F3). Third, high-skilled workers are significantly more likely to join newcomers after the policy

shock, compared with non-high-skilled workers (see Appendix Figure F4). The switch of high-

skilled workers is in line with the fact that high-skilled positions are technologically closer to

EV-related and intelligence-related innovations.
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8 Conclusion

This paper documents how China’s dual-credit policy directed technical change in the

automotive sector toward vehicle electrification. Combining administrative production

records, new-vehicle specifications, and rich innovation and talent data, we document several

key transitions induced by the policy: First, the dual-credit policy creates a significant

price wedge between EVs and GVs that shifts demand (and thus supply) toward EVs.

Second, because of the NEV-target threshold, relatively small firms with GV production

above the threshold reduced GV production, while larger firms relatively increased it.

Third, the turn toward EVs substitutes for effort to reduce GV fuel consumption. Fourth,

cannibalization generates negative incentives for incumbents to produce high-quality EVs,

whereas newcomers’ EVs exhibit higher quality in driving performance and intelligence.

Taken together, the dual-credit policy plays a significant role in the transition from GVs to

EVs, as well as the shift from incumbents to newcomers.

These production transitions are accompanied by shifts in technological innovation

and talent allocation within the industry. Innovation was redirected toward EV and

intelligence-related technologies, weakening path dependence in innovation. This shift was

mirrored in the labor market, where EV-focused firms increasingly hired high-skilled, highly

educated workers and concentrated activity in top-tier cities.

The results highlight the power of targeted regulatory policies to align private incentives

with climate and industrial objectives. The introduction of credit trading enables the market to

select players with comparative advantages. Cannibalization, combined with a new product

type with distinct technological requirements, further enhances newcomers’ advantages in

competition with incumbents.
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A Data Appendix

A.1 Data construction for step I analysis

We assemble multiple administrative data sources in constructing the sample that covers the

near universe of all new car products from 2010 to 2024.

The basis of this data set is the government-released announcements of motor vehicle

manufacturers and products. In each announcement, we can find a list of new products

released by manufacturers. While in this new product list, products are listed with their model

code instead of trim code, we can identify the trim that is newly released by further checking

the Road Motor Vehicle Manufacturers and Products Information Inquiry System. Figure A1

shows a sample page and its translation from the Road Motor Vehicle Manufacturers and

Products Information Inquiry System. It shows the detailed information of an FAW model

with trim code CA6463BEV, including identifiers, dimensions, weights, performance data, key

intermediate input suppliers, production location, and others.

Second, we supplement some other performance data of electric vehicles from (1) the

Catalogues of Recommended Models for the Promotion and Adoption of NEVs, available from

2017 to 2022, (2) the Catalogues of Energy-Efficient Vehicles and NEVs Eligible for Vehicle

and Vessel Tax Reduction, available from 2012 onwards, and (3) the Catalogues of NEVs

Exempt from Vehicle Purchase Tax, available from 2014 onwards. In these catalogues, we

observe the identifier, dimension, curb weight, range, battery capacity, battery weight, battery

type, electricity consumption, battery type, motor power, and others. Compared with the

announcement data, these catalogues essentially enrich the performance measures available

for our analysis, enabling us to back out the NEV credit for each trim.

Third, we augment this data by combining the data from the China Automobile Energy

Consumption Query System,18 which provides information about vehicle energy consumption

18Refer to https://yhgscx.miit.gov.cn, last accessed: 26 September, 2025.
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A: Original Chinese version

 

Product code 
Batch 
Manufacturer 
Location 

Trim code 
Length 
Height 
Total weight

 
Passenger

 Max. speed

 Overhang 
Chassis 
Leaf springs

c

 

Axles Wheelbase 

Product ID 
Release date

 

Brand 

Car category 
Width 

Curb weight 
Angle 
Load 

Front track Rear Track 
Wheels 
Tire Spec. 
Steering control 
VIN 
Fuel type Fuel consum. 
Emission std. 
Engine Manuf. Engine model 
Displacement Motor power 

ABS Yes Inspection exem. 
Other Optional configurations: logo without luminous e5ect, non-privacy glass, without side logo, side 

decoration plate; Battery type: ternary lithium-ion battery; Battery manufacturer: Contemporary 
Amperex Technology Co., Ltd.; ABS system supplier: Bosch Automotive Systems (Suzhou) Co., Ltd.; 
ABS system model: EV7111 

End of prod. End of sales 

FAW China FAW Group Co., Ltd. 
Changchun 

Pure Electric Multi-Purpose Passenger 
Vehicle 

Bearing type car body 

Steering wheel 

Pure electric 

Zhuzhou CRRC Times Electric 

B: English translation

Figure A1: Sample Page of Trim Information

Notes: Data Source: Road Motor Vehicle Manufacturers and Products Information Inquiry System. In Panel B, the
translation is done by the authors.

from 2010 onwards. Specifically, we are able to observe administrative records of fuel

consumption of gasoline vehicles, which is crucial for analyzing the impact of the dual-credit

policy on fuel economy of vehicles.

Across these data sources, we use the trim code as the unique identifier to merge the data.

Trim code of vehicles in China is regulated under the Rules of Designating Trim Codes of

Automobiles and Trailers and the Technical Conditions for Determining the Same Trim of

Automobile Products. Take a trim code TSL7000BEVAR0 as an example. It consists of several

parts:

TSL︸︷︷︸
OEM Code

7︸︷︷︸
Vehicle Category Code

00︸︷︷︸
Main Parameter Code

0︸︷︷︸
Product Serial Number

BEV︸︷︷︸
Classification code

AR0︸︷︷︸
Customized Code

where TSL stands for Tesla, 7 is the category code for sedan, 00 is the displacement for sedan,

which is 0 for EVs, 0 following is the serial number, indicating it is the first product among this
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type. BEV indicates battery electric vehicle, and AR0 is freely determined by firms. This trim

code indicates a specific trim of Tesla Model 3. We define the first four parts up to product

serial number of a trim code as the model code, which captures the same series of product. For

example, every Model 3 has the same TSL7000 model code in our data.

Together, we observe 2,665 unique model codes and 19,855 unique trim codes in our data

for the period from 2010 to 2024, produced by 156 original equipment manufacturers.

However, in this dataset, we lack two key variables to analyze the market outcomes of

cars: prices and sales. To add this important information, we turn to autohome.com, one of the

leading online platforms and forums of the Chinese auto market. It provides rich information

of cars on the market.

Collecting the public data available on the website, we assemble a comprehensive dataset

of cars from 2010 to 2024, with an extensive set of characteristics, including price, sales,

dimensions, weight, fuel consumption, driving performance, suppliers, and importantly,

intelligence-related measures.

There are several differences in the way of data recording between the autohome.com

and the administrative new car product data. Specifically, the autohome.com data is at

the specification level, which is even more granular than at the trim level because some

specifications only differ in terms of exterior or interior decorations, which is not sufficient

to be designated a new trim code. In sum, we collect data for 2,475 unique models and 45,268

specifications. Noting that the autohome.com data also covers many imported foreign brand

cars, the coverage of models is slightly lower than the administrative new car product data.

It is worth noting that there are only identifiers for models and specifications defined by the

platform, which is not directly mapped to the trim code. Moreover, the name of producers

in this data is different from the official firm name of original equipment manufacturers as in

the administrative records. Because of the ambiguity in the autohome.com data, we do not

consider forming a 1-to-1 mapping at the most granular level. Instead, we identify the original
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equipment manufacturers in the data so that we can distinguish incumbents and newcomers.

We manage to match 137 original equipment manufacturers, covering 1,685 models and 35,828

specifications.

A.2 Data construction for step II analysis

Patent Data

We combine two data sources in constructing the patent data used in this study. The

first one is the patent application records from the China National Intellectual Property

Administration (CNIPA). We identify all the patents application filled by the manufacturers,

the key shareholders, and the affiliated firms. We start from the CNIPA system because it

offers the query function that helps us to precisely identify each firm with their Chinese

name. Starting from Google Patent may include some noise in this step of identification.

We supplement the patent records with Google Patent, which provides the full text contents,

Cooperative Patent Classification (CPC) code, legal status and corresponding timeline, as well

as citations of patents.

Figure A2 shows the dynamics of the number of patent applications filled in each year,

as well as the share of patents that are applied by manufacturers. We can see that the total

number increases rapidly in the past decade except for 2024. This is in line with the fact that

with the electrification process of vehicles, many innovations take place in the automobile

industry. At the same time, the share of patents applied by manufactures started decreasing

after 2018. In general, the manufacturers only account for a small share of patents among

the car manufacturing groups, highlighting the importance of including affiliated firms into

account.

To identify the key shareholders of manufacturers and the affiliation network of firms,

we leverage the ownership structure data from tianyancha.com, one of the leading business

information platforms of Chinese companies that provides company registration data, legal
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Figure A2: Share of Patents by Manufacturers

Notes: Figure shows the total number of patents and the share of patents applied by manufacturers across years.

filings, financial records, and corporate relationships. Figure A3 shows a sample page of

ownership structure of a car manufacturer in tianyancha.com. We identify a key shareholder

as a firm that directly or indirectly hold more than 25% of shares, echoing the definition

of connected firms in the dual-credit policy. Then, we include all affiliated firms of these

key shareholders, defined as firms whose shares are directly or indirectly hold by the key

shareholders. It is worth noting that, in tianyancha.com, we can only observe ownership

structure up to three layers of indirect shareholding. Therefore, we assume that firms that are

indirectly linked through more than three intermediate firms are not affiliated with each other.

We identify three types of innovation in this study, namely EV-related, GV-related, and

intelligence-related innovations. The identification of the first two is based on previous

literature. The identification of the last one is based on inquiry with a leading Large Language

Model (LLM) about “the key information tech technologies applied in the auto industry”.

Then, we search for the corresponding CPC code based on the key words of technologies.

Table A1 summarizes the CPC and IPC codes used to categorized innovations.
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Actual Controller / Beneficial Owner: 77.8022% Actual Controller / Beneficial Owner: 77.8022% 

Jun LEI Wanqiang 
LI 

Feng 
HONG 

De LIU 

Xiaomi Technology 
Co., Ltd 

Xiaomi Automobile 
Technology Co., Ltd. 

Contemporary BAIC 
(Beijing) New Energy 
Technology Co., Ltd. 

Figure A3: Sample Page of tianyancha.com

Notes: Figure shows the sample page of ownership structure of a company on tianyancha.com.

Table A1: IPC and CPC Codes in Innovation Categorization

IPC Code CPC Code Description

EV-related Innovation

B60K1
Arrangement or mounting of electrical propulsion units in
vehicles.

B60K6 Arrangement or mounting of hybrid propulsion units.

B60K7
Arrangement or mounting of auxiliary drives or power
take-offs.

B60L3
Electric propulsion using power supplied within the
vehicle (e.g. batteries).

B60L7/1,
20

Electric propulsion with power supply external to the
vehicle, such as trolley wires or inductive systems.

Continued on next page
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IPC Code CPC Code Description

B60L11
Electric propulsion with energy recovery (e.g. regenerative
braking).

B60L15
Methods or apparatus for reducing energy consumption in
electric propulsion.

B60W10/08,
24, 26,28

Control systems for hybrid or electric vehicles, including
torque distribution, braking coordination, and power flow
management.

B60W20 Control systems specially adapted for hybrid vehicles.

B60L11/18
Regenerative braking with control of returned energy
storage.

B60L1
Electric propulsion using external sources of power along
a fixed track (railway, tram, trolley).

B60L50
Electric propulsion details of power supply means for road
vehicles.

B60L53
Electric propulsion details concerning charging equipment
and methods.

B60L55
Electric propulsion details concerning electric energy
storage in vehicles.

B60L58
Electric propulsion details concerning wireless energy
transfer for vehicles.

B60W60
Control systems specially adapted for hybrid or electric
vehicles with energy management strategies.

H01M8 Fuel cells and related structures.

H01M10/02,
04, 052,
0525

Secondary (rechargeable) batteries, especially lithium-ion
structures, electrodes, and electrolytes.

H01M50
Constructional details of electrochemical cells (e.g.
casings, current collectors, connectors).

GV-related Innovation

B60K5
Arrangement or mounting of internal combustion engines
in vehicles.

B60K6 Arrangement or mounting of hybrid propulsion units.

B60K13
Arrangement in connection with combustion air intake or
gas exhaust of propulsion units

B60K15
Arrangement in connection with fuel supply of
combustion engines

Continued on next page
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IPC Code CPC Code Description

B60S5/02 Supplying fuel to vehicles

B60W10/06
Conjoint control of vehicle sub-units, including control of
combustion engines

B60W20 Control systems specially adapted for hybrid vehicles

F02B Internal-combustion piston engines

F02D Controlling combustion engines

F02F Cylinders, pistons, or casings for combustion engines

F02M Supplying combustion engines with fuel or air

F02N Starting of internal combustion engines

F02P Ignition systems for internal combustion engines.

Intelligence-related Innovation

B60K37 Dashboards (as road-vehicle superstructure sub-units)

B60L2260 Indexing for operating modes of electric propulsion

B60R11/02
Arrangements for holding or mounting articles, for radio
sets, television sets, telephones, or the like

B60W30 Purposes of road vehicle drive control systems

B60W50 Details of control systems for road vehicle drive control

B60W60
Drive control systems specially adapted for autonomous
road vehicles

B62D25/14 Dashboards as superstructure sub-units

G02B27/01 Head-up displays

G05B13
Adaptive control systems, including artificial intelligence
applied to control.

G06F3/0481
Touch-sensitive input devices, particularly touchscreens as
user interfaces.

G08G1/0968
Systems involving transmission of navigation instructions
to the vehicle

H04W4/02
Wireless communication services for location-based
applications (e.g. navigation).

Notes: Table shows the IPC and CPC codes for classifying patens into EV-related innovations, GV-related

innovations, and intelligence-related innovations. Following previous literature, we treat hybrid (non-

plug-in) patents as GV-related innovations.

LinkedIn Profiles
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LinkedIn is one of the leading online platforms where individuals and organizations

connect, share career information, and explore job opportunities. Individual profiles on

LinkedIn provide rich information about people’s education background, job history, and

details about specific tasks, experience, and skills. Given this advantage, LinkedIn profiles

have been increasingly used in economics research. In this study, we use LinkedIn profiles

to capture individuals who have ever worked for leading car manufacturers in China, which

enables us to look at the labor market consequences of the transition in the auto industry.

While LinkedIn has left China since 2019, there are still many China-based users remain

active on the platform. Moreover, Chinese users can still register for a LinkedIn profile. In sum,

there are more than 16 million China-based user profiles on LinkedIn, which is sufficiently

large. However, even with a large user group, LinkedIn does not cover the universe of

workforce. In particular, LinkedIn is more representative for high-tech industries. In recent

years, auto industry increasingly incorporates IT- and AI-related technologies. Therefore, we

argue that LinkedIn profiles should also have a good representativeness for the auto industry.

When we look at the auto industry, many engineers, technicians, designers, and managers

are included. Restricting our focus on China-based users who have ever worked for car

manufacturers during 2010 to 2024 gives us a total sample of 173,320 user profiles and 420,322

job spell records.

It is worth noting that LinkedIn records car manufacturers in a way different than

identifying each individual original equipment manufacturer. To enable comparisons across

results, we categorize 209 car manufacturing firms listed on LinkedIn into 55 groups and the

“other” that covers all the original equipment manufacturers in our baseline datasets. Further,

we divide groups into EV-focused and GV-focused groups based on the share of EV products

among all new products introduced. Specifically, those with a share of EV products above the

median are defined as EV-focused, while the others are defined as GV-focused.
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B Additional Details of the Policy Background

B.1 Calculation of CAFC

The target levels of fuel consumption are set according to the national standards entitled “Fuel

consumption evaluation methods and targets for passenger cars”. The national standards are

managed by the government and are drafted by leading research institutions in the field as

well as some leading automakers. The standards are updated periodically. Within the studied

period, there are three versions of this national standard, which became effective on the 1

January of 2012, 2016, and 2021.

The target levels are determined by curb weight and the number of seats. Figure B1 shows

the target levels of litre of fuel consumed per 100 kilometers of driving across different versions

of standards. It is worth noting that in the 2021 version of the standard, the evaluation method

was changed from the New European Driving Cycle (NEDC) to Worldwide harmonized Light

vehicles Test Cycle (WLTC). The latter one is considered to be closer to real-world driving

conditions. In general, the fuel consumption under WLTC is about 10% higher than that under

NEDC.

The compliance level is set above the target level when a standard newly comes into force

and gradually converge to the target level overtime. Figure B2 shows the compliance-target

ratio across years.

As shown in Section 4, the calculation of CAFC credit is based on the following equation,

which compares the weighted average fuel consumption of cars sold and the average

compliance level determined by the above standards.

CAFC Credit =


∑J

j=1 ēj
(
wj
)

qj

∑J
j=1 qj

· η︸ ︷︷ ︸
compliance level

−
∑J

j=1 ejqj

∑J
j=1 qjW︸ ︷︷ ︸

actual FC

 · Qg
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Figure B1: Target Level of Fuel Consumption

Notes: Figure shows the target levels of litre of fuel consumed per 100 kilometers of driving across different
versions of standards. In the 2021 version of fuel consumption target, the evaluation method changed from NEDC
to WLTC.
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Figure B2: Compliance-Target Ratio

Notes: Figure shows the Compliance-target Ratio across years.

where the weighting factor W is favoring energy-saving GVs and EVs. Table B1 shows the

values of W across years and car categories.
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Table B1: Weighting Factor W

W 2012-2015 2016-17 2018-19 2020 2021 2022 2023 2024

BEV/PHEV/FCEV 5 5 3 2 2 1.8 1.6 1.3
Energy-saving GV 3 3.5 2.5 1.5 1.4 1.3 1.2 1.1

Notes: Table shows the values of W across years and car categories. “BEV” stands for battery electric
vehicle. “PHEV” stands for plug-in hybrid electric vehicle. “FCEV” stands for fuel cell electric vehicle.
“Energy-saving GV” stands for GVs with fuel consumption <2.8L/100km under the 2012 and 2016
standards, and <3.2L/100km under the 2021 standard.

B.2 Calculation of NEV credit

Throughout this study, we do not take fuel cell electric vehicles into account because it is still

an immature technology with limited market practices. Here, we focus on the calculation of

NEV credit for battery electric vehicles and plug-in hybrid electric vehicles.

For battery electric vehicles, the NEV credit is determined by curb weight (w), range (r),

battery energy density (d), and electricity consumption level (c). The calculation is based on

the following equation:

NEV Credit =



k1(r)︸ ︷︷ ︸
standard credit

∗ ζ1(c, w)︸ ︷︷ ︸
e adjustment factor

, 2017 version

k1(r, w) ∗ ζ1(c, w) ∗ ζ2(r)︸ ︷︷ ︸
r adjustment factor

∗ ζ3(d)︸ ︷︷ ︸
d adjustment factor

, 2020 and 2023 versions

Figure B3 summarizes the calculation criteria across different versions of the dual-credit

policy. In general, the criteria become more and more stringent overtime, leading to a decrease

of per vehicle credit.

Except for the positive credit calculation formula, the government also adjust ratio of the

NEV credit target on GV production overtime (see Figure B4). Before 2024, it increases by 2%

each year. Afterwards, it increases by 10% each year and is assumed to keep increasing in 2026

and 2027 at the time of research.
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Figure B3: NEV Credit Calculation

Notes: Figure shows the rules of calculating each component in NEV credit formula. Panel A shows the
relationship between range and the standard credit. Panel B shows the space of electricity consumption and curb
weight of EVs. ζ1 is determined by these two factors. Specifically, for the 2017 version, satisfying the electricity
consumption target gives you a ζ1 = 1 or ζ1 = 1.2, depending on which target is achieved. For the 2020 and 2023
version, meeting the target gives you ζ1 ≥ 1, where the actual ζ1 depends on the electricity consumption level and
is capped at 1.5. Panel C shows the relationship between ζ2 and range. Panel D shows the relationship between ζ3
and energy density of battery.

B.3 Credit Clearance and Connected Firms

CAFC credits are only allowed to be transferred between “connected firms” defined by the

government. Firms are connected when they meet at least one of the following conditions:

1. A domestic car manufacturer and another domestic manufacturer in which it directly or

indirectly holds 25% or more of shares.

2. Two domestic car manufacturers that are both directly or indirectly held 25% or more by

the same domestic third party.

3. An authorized importer of cars from a foreign manufacturer and a domestic manufacturer

in which that foreign manufacturer directly or indirectly holds 25% or more of shares.
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Figure B4: γ Over time

Notes: Figure shows the dynamics of γ across years. Dashed line indicates the proposed levels in the new draft for
comment, which is not yet determined or come into force.

Among the about 200 active manufacturers that are ever observed in the market, we can

identify 23 connected sets connecting 118 manufacturers as shown in Figure B5 based on

the ownership structure data from tianyancha.com. A lot of manufacturers are part of

the few large groups, including Shanghai Automotive Industry Corporation (SAIC), First

Automotive Works (FAW), Guangzhou Automobile Group (GAC), Dongfeng Automobile

Company (DFAC), Beijing Automotive Group (BAIC), Changan Automobile, Chery, and

Geely. BYD and Great Wall Motor are also major automakers in China. However, compared

with the groups listed in text, they do not have a large connected network of original

equipment manufacturers.

B.4 Contemporary policies

Purchase subsidies in general decrease over time, except that in 2018, those with a range over

400km witnessed an increase in subsidy level (see Figure B6).

Tables B2 and B3 show the subsidy levels in charging station investments.
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Connected OEM Companies Network

Figure B5: Connected Sets of Manufacturers

Notes: Figure shows the connected sets of manufacturers. Each dot stands for one manufacturer.
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Figure B6: Purchase Subsidies for EVs

Notes: Figure shows the dynamics of purchase subsidies of new energy vehicles.
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Table B2: Subsidy by region and year

Region
2013 2014 2015

Promotion Volume
(Q)

Subsidy
(mil. RMB)

Promotion Volume
(Q)

Subsidy
(mil. RMB)

Promotion Volume
(Q)

Subsidy
(mil. RMB)

Key Clusters 2500 ≤ Q < 5000 20 5000 ≤ Q < 7000 27 10000 ≤ Q < 15000 50

5000 ≤ Q < 7000 30 7000 ≤ Q < 10000 38 15000 ≤ Q < 20000 70

7000 ≤ Q < 10000 45 10000 ≤ Q < 15000 55 20000 ≤ Q < 25000 90

Q ≥ 10000 75 Q ≥ 15000 90 Q ≥ 25000 120

Other Regions 1500 ≤ Q < 2500 10 3000 ≤ Q < 5000 18 5000 ≤ Q < 7000 24

2500 ≤ Q < 5000 20 5000 ≤ Q < 7000 27 7000 ≤ Q < 10000 34

5000 ≤ Q < 7000 30 7000 ≤ Q < 10000 38 10000 ≤ Q < 15000 50

Q ≥ 7000 50 Q ≥ 10000 67 Q ≥ 15000 80

Notes: “Key Clusters” include Beijing-Tianjin-Hebei region, Yangtze River Delta, and
Pearl River Delta.

Table B3: Subsidy by region and year (Cont’d)

Year
Key regions for air pollution control Central provinces and Fujian Province Other provinces

Q Subsidy (mil. RMB) Q Subsidy (mil. RMB) Q Subsidy (mil. RMB)

2016 Q ≥ 30000 min
(

120, 90 + Q−30000
2500 × 7.5

)
Q ≥ 18000 min

(
120, 54 + Q−18000

1500 × 4.5
)

Q ≥ 10000 min
(

120, 30 + Q−10000
800 × 2.4

)
2017 Q ≥ 35000 min

(
140, 95 + Q−35000

3000 × 8
)

Q ≥ 22000 min
(

140, 59.5 + Q−22000
2000 × 5.5

)
Q ≥ 12000 min

(
140, 32.5 + Q−12000

1000 × 2.8
)

2018 Q ≥ 43000 min
(

160, 104 + Q−43000
4000 × 9.5

)
Q ≥ 28000 min

(
160, 67 + Q−28000

2500 × 6
)

Q ≥ 15000 min
(

160, 36 + Q−15000
1200 × 3

)
2019 Q ≥ 55000 min

(
180, 115 + Q−55000

5000 × 10
)

Q ≥ 38000 min
(

180, 80 + Q−38000
3500 × 7

)
Q ≥ 20000 min

(
180, 42 + Q−20000

1500 × 3.2
)

2020 Q ≥ 70000 min
(

200, 126 + Q−70000
6000 × 11

)
Q ≥ 50000 min

(
200, 90 + Q−50000

4500 × 8
)

Q ≥ 30000 min
(

200, 54 + Q−30000
2500 × 4.5

)
Notes: “Key regions” include Beijing, Shanghai, Tianjin, Hebei, Shanxi, Jiangsu,
Zhejiang, Shandong, Guangdong, and Hainan provinces.
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C Additional Descriptive Results

C.1 Estimating Manufacturer Fixed Effect in Model Sales

We leverage the monthly national model sales from autohome.com data to estimate the

following empirical model:

ln(Yjt) = βXXjt + γ f + δt + ε jt

where Yjt is the yearly sales of model j introduced in year t. We control for car category and

fuel type of cars, as well as manufacturer fixed effects and year fixed effects in the model.

γ f is the coefficient of interest, which captures the residualized average sales per model of

each manufacturer. It indicates the “popularity” of products made by each manufacturer in

the market. We do not control for many car attributes because we would like to capture the

difference between manufacturers, taking into account their endogenous price choices and

attribute choices. Therefore, we are not trying to establish any causal linkage between sales

and manufacturers. But rather, we try to compare the average sales between manufacturers

within the same category of cars and the same year, in an aggregate way that we weight the

comparisons by their contributions to sales variance.

For comparison, we estimate the above equation and control for price. By doing so, we

partial out the impact of different manufacturers have different price strategies. The estimated

manufacturer fixed effects would be closer to a “competitiveness” or “attractiveness” measures

given the same price. Results are shown in Figure C1. The take-away messages are identical

to those drawn from the main text: (1) In the EV market, new manufacturers are taking place

of incumbents. (2) In the EV market, domestic manufacturers are replacing joint-ventures to

hold the leading positions. Moreover, we can see that the estimated fixed effects are smaller

for GV manufactures than for EV manufacturers, indicating that, with price considered, EVs

have higher sales per model than GVs.
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Figure C1: Top Manufacturers in the Automobile Market (Controlling for Price)

Notes: Figure shows top manufacturers of gasoline vehicles (GVs) and electric vehicles (EVs) in the market. The
y-variable is the residualized sales per model captured by the estimates of manufacturer fixed effects.
Log-transformed price, body type, energy type, and year fixed effects are controlled for in this regression. The
estimation is based on autohome.com data.

C.2 Newcomers and their market share
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Figure C2: Newcomers after the implementation of Dual-Credit Policy

Notes: Figure shows the dynamics of the share of new car products introduced by newcomers and incumbents, as
well as the dynamics in the market share of products produced by newcomers. Data source: administrative
production records of each original equipment manufacturer.

C.3 Dynamics of CAFC and NEV Credits

Throughout the years, the total supply of credits in the market are in general positive, with

the exception of 2020 when COVID hit the auto industry (see Figure C3). While the aggregate
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supply is positive, credit price is not zero because individual firms with negative credit would

still need to reach bilateral agreement with credit sellers. Nonetheless, rapidly increasing

aggregate supply drives down the price of credits.
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Figure C3: Dynamics of CAFC and NEV Credits

Notes: Figure shows the aggregate number of CAFC and NEV credits in the market across years. All the credits
are recorded before credit trading.
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D Additional Details of the Model

D.1 Proofs

D.1.1 Divergence in GV production with discontinuity in NEV credit target

First, consider a small number ε > 0, then the net profit of producing Q̄g + ε instead of Q̄g can

be written as:19

∫ Q̄+ε

0
(pj − cj)dj − γ(Q̄g + ε)−

∫ Q̄

0
(pj − cj)dj ε→0−−→ −γQ̄g < 0

Therefore, firms with GV productions just above the threshold would choose to reduce their

GV productions. Given the fact that marginal profit pj − cj > γ, ∀j, we have

∂
(∫ Q̄+ε

Q̄ (pj − cj)dj − γ(Q̄g + ε)
)

∂ε
> 0

⇒ ∃ε s.t.
∫ Q̄+ε

0
(pj − cj)dj − γ(Q̄g + ε)−

∫ Q̄

0
(pj − cj)dj = 0

D.1.2 Cannibalization and the choice of attributes

Based on the first-order derivative, regarding a given attribute x, we have the following first

order condition (FOC):

0 = −c′(xj) +
(
[λ

g
f ◦ gx]j + [λe

f ◦ ex]j
)

qj︸ ︷︷ ︸
credit term

+ [(Φ ◦ ∆x)m]j ,

where gx = ∂Lg

∂x , ex = ∂Le

∂x .

For simplicity, assume the attribute is not included in credit calculation,
(
[λ

g
f ◦ gx]j + [λe

f ◦ ex]j
)

qj →

19Here we slightly abuse the notation that j stands for each car sold instead of each car product as in the main text.
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0. Consider a newcomer with sj = 0 and qj ≈ 0, we have

c′(xN
j ) = βx sj(xN) (1 − sj(xN))mj(xN)

wher N stands for “newcomers”.

Consider an incumbent making the decision about x, we have

c′(xI
j ) = βx sj(xI) (1 − sj(xI))mj(xI)− βx sj(xI) ∑

l∈F f \{j}
sl(xI)ml(xI)

where I stands for “incumbents”.

For mj > 0, ∀j; and x satisfying βx > 0, that is, x is an attribute valued by consumers, we

have

c′(xN
j ) > c′(xI

j )

at the optimum. Based on the regular assumption that c′′(·) > 0, we have

xN
j > xI

j

D.1.3 Solving cost minimization problem

Given the cost minimization problem:

min
{hn}N

1 ,ma

ca = ∑
n

w f ,nhn + r f ma

s.t. Aβa
f ,s(a)

(
∏

n
hγan

n

)
mδa

a ≥ xa,

we can write down the Lagrangian:

L = ∑
n

w f ,nhn + r f ma − λ

(
Aβa

f ,s(a)

(
∏

n
hγan

n

)
mδa

a − xa

)
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Then we have FOCs:

∂L
∂haτ

: w f ,τ = λγaτ

Aβa
f ,s(a) ∏n hγan

n mδa
a

haτ
= λγaτ

xa

haτ

∂L
∂ma

: r f = λδa
xa

ma

⇒ h∗aτ =
λγaτxa

w f ,τ
, m∗

a =
λδaxa

r f

Plugging it back to the cost function, we have:

c∗a = ∑
τ

w f ,τh∗aτ + r f m∗
a = λxa

(
∑
τ

γaτ + δa

)
= λxa ⇒ λ =

c∗a
xa

Therefore, we have

h∗aτ =
γaτc∗a
w f ,τ

, m∗
a =

δac∗a
r f

c∗xa
= Ka · A−βa

f ,s(a) · rδa
f ·
(

∏
τ

wγaτ

f ,τ

)
· xa

where Ka ≡
(

∏τ γ
−γaτ
aτ

)
δ−δa

a .
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E Model Estimation

In this section, we provide details about estimating the model outlined in 4. The purpose of

the estimation is to get λg,e, the shadow price of credits, which speaks to the direct impacts of

the dual-credit policy. The procedure consists of three steps. First, we estimate the coefficients

in the utility function, especially the coefficient of price α. Second, we calculate the markup of

vehicles based on price elasticity, and back out the sum of marginal cost c and credit burden

τ. Finally, we regress the sum of c and τ on a set of car attributes and the credits to get the

coefficient of credits, which stands for the shadow price λ.

E.1 Demand side

Based on the multinomial Logit model we have, we can write down the following equation for

estimation:

ln sjy − ln s0y = xjyβx − αpjy + ξ j + τy + ε jy (11)

It is worth noting that, pjy here should be the actual cost faced by consumers. Following

Barwick et al. (2024a), we take taxation and subsidies into account. Specifically, we use the

consumer cost below when estimating α:

Consumer Cost ≡ p̃ = MSRP × 1 + value-added tax rate + purchase tax rate
1 + value-added tax rate

− Subsidy

As documented in the literature, price is endogenous in the demand equation because price

may be correlated with unobserved quality that is related to sales. Following Barwick et al.

(2024a), we consider the following two instruments: (1) national purchase subsidies for

EVs. The national purchase subsidies are largely determined by the stair-wise function of

range of EVs, and the formula changes across years. This generates sufficient variations for

identification. (2) purchase tax for cars. Purchase tax is normally 10% of the list price of
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vehicles. However, there are several policy shocks that generates variations for identification.

Specifically, from 1 October 2015 to 31 December 2016, the tax rate was reduced to 5% for

cars with displacement below 1600 ml. In 2017, the tax rate was set at 7.5% for cars with

displacement below 1600 ml. Also, as stated in Section 2, EVs are exempted from purchase tax.

The identification assumption is that Because of the calculation method, both instruments are

strong predictors of p̃.

Estimation results are shown in Table E1. In our preferred specification in column (2), the

coefficient of ln( p̃) is estimated to be -2.293, which is comparable to the number in Hu et al.

(2025). This point estimate result is robust to changing the model into a nested Logit model

where consumers first choose whether to buy the outside good or EVs or GVs, then they choose

a specific product.

Table E1: Demand Estimation

(1) (2) (3) (4)
VARIABLES ln(sj/s0) ln(sj/s0) ln(sj/s0) ln(sj/s0)

ln( p̃) -1.254*** -2.293*** 0.118 -2.027***
(0.162) (0.444) (0.0721) (0.571)

ln(sj|g) 0.940*** 0.0731
(0.00780) (0.0967)

Range 0.00121* 0.000927 0.00426*** 0.00120
(0.000708) (0.000654) (0.000854) (0.000764)

Weight 0.000681 0.00154*** -0.000722*** 0.00130**
(0.000540) (0.000510) (0.000189) (0.000510)

Power 0.00181 0.00316* -0.000187 0.00280
(0.00165) (0.00174) (0.000576) (0.00177)

Fuel Consumption -0.00312 -0.00556 0.00346** -0.00514
(0.0157) (0.0162) (0.00158) (0.0149)

Observations 12,902 12,902 12,900 12,900
R-squared 0.009 0.003 0.941 0.144
Model MNL MNL Nested Nested
Estimation OLS IV OLS IV
Product FE Yes Yes Yes Yes
Firm-Quarter-Market Yes Yes Yes Yes

Notes: Table shows the estimation result of Equation (11). “MNL” stands for multinomial Logit model.
“Nested” stands for nested Logit model where consumers first choose whether to buy the outside good or
EVs or GVs, then they choose a specific product. ln(sj|g) indicates the log share of product j within product
nest g = EV, GV. Robust standard errors clustered at the market level are in parentheses. ***, **, and * denote
significance at the 1, 5, and 10 percent level, respectively.
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E.2 Supply side

From the FOC of firms regarding vehicle price in Section 4, we can write down the following:

p − c − τ =
(
Φ ◦ ∆p

)−1
(−s)

where we assume that price does not directly affect the credits of vehicles. Given the elements

in ∆p satisfying

∂sk

∂pj
=


−αsj

(
1 − sj

)
, k = j

αsksj, k ̸= j

and the fact that α̂ = −2.293/p, we can calculate the margins of vehicles. It is worth noting

that, to back out the marginal cost and the tax burden of credit τ, we use the price faced by

producers in the calculation, which is defined as follows:

Producer Price = MSRP × 1 − consumption tax rate
1 + value-added tax rate

Results indicate that markup takes up about 44% of the price.

E.3 Credit values

With the sum of marginal cost and the tax burden of credits, we can divide them by estimating

the following equation:

(c + τ)jy = β0 + βXXj + βλ,gCAFC + βλ,eNEV + γjy + ηyr + δm + ε jy

where CAFC and NEV indicate CAFC and NEV credits, respectively. The logic is that, with

attributes Xj and a set of fixed effects that affect the marginal cost controlled for, we can identify

the coefficients of credits, which would then capture the shadow prices λg,e. The Results in

77



Table E2 suggests that the average value of an NEV credit is around 5,880 CNY while that for a

CAFC credit is around 3,420 CNY. The fact that NEV credit is more valuable is consistent from

the policy setting.

Table E2: Supply Estimation

(1) (2)
VARIABLES MC MC

NEV credit -0.588***
(0.0536)

CAFC credit -0.342***
(0.116)

Speed -0.0108*** -0.00598***
(0.00153) (0.00184)

Power 0.0218*** 0.0417***
(0.00117) (0.00245)

Weight 0.00762*** 0.0101***
(0.000447) (0.000404)

Range 0.00185***
(0.000313)

Fuel Consumption -0.524***
(0.104)

Observations 13,269 162,368
R-squared 0.901 0.898
Sample EV GV
Firm-Year Yes Yes
Year Released Yes Yes
Market Yes Yes

Notes: Table shows the estimation result of estimating the cost equation. “MC” stands for marginal cost.
Robust standard errors clustered at the market level are in parentheses. ***, **, and * denote significance at the
1, 5, and 10 percent level, respectively.

We also consider the dynamics of credit prices and calculate the average credit value per

vehicle from 2018 to 2024. Figure E1 shows that the average credit value for EV is always

positive while that for GV is always negative. The change in credit values for EV is generally

mapped (inversely) to the market dynamics of aggregate credit surplus/deficit.
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Figure E1: Dynamics of CAFC and NEV Credit Values Per Vehicle

Notes: Figure shows the average credit value per vehicle for EVs and GVs across years.
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F Additional Empirical Results
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Figure F1: Decrease of Fuel Consumption Overtime

Notes: Figure shows the decrease of fuel consumption of gasoline vehicles across years. Each dot stands for the
estimation of coefficient δt in the following equation:

FCjt = ∑
t ̸=2017

δt + βXXjt + γ f + λb + ε jt

where FCjt is the fuel consumption level of product j introduced in year t. δt captures the relative level of fuel
consumption in year t compared with the baseline year 2017. We control for curb weight and its square term, firm
fixed effects γ f , and brand fixed effects λb in the equation. We estimate the equation with the administrative new
car product data. Capped spikes indicate the 95% confidence interval. Robust standard errors are clustered at the
firm level.
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A: EV-related Innovation
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B: GV-related Innovation

Figure F2: Event Study of Innovation of Newcomers

Notes: Figure shows the event-study results of the dual-credit policy on EV-related and GV-related innovation of
newcomers. The year of policy shock is 2018. Each circle indicates the point estimations of the treatment effect
(i.e., the coefficient of newcomers f × Tt in Equations (8))). Each vertical dashed line indicates the 95% confidence
interval of the treatment effect.
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Table F1: Wage Premium of Joining EV-focused Firms

(1) (2) (3) (4) (5)
VARIABLES ∆ ln(wage) ∆ ln(wage) ∆ ln(wage) ∆ ln(wage) ∆ ln(wage)

EV-focused Firms × Post 0.0708*** 0.0546*** 0.0552*** 0.0435** 0.0434**
(0.00960) (0.00983) (0.0177) (0.0178) (0.0178)

GV-focused Firms × Post -0.0258** -0.0288** -0.0130 -0.0277 -0.0276
(0.0110) (0.0113) (0.0215) (0.0206) (0.0206)

Mean 0.0822 0.110 0.117 0.0974 0.0974
Observations 127,615 117,424 41,692 88,190 88,190
R-squared 0.004 0.012 0.012 0.225 0.225
Worker FE No No No Yes Yes
Year FE No Yes Yes Yes Yes
Education FE No No Yes No No
Gender FE No No Yes No No
Job Title FE No No No No Yes
City FE No Yes Yes No No

Notes: Table shows the result of regressing the change between log end salary of last job and the log start salary
of the new job. The estimation sample is at the job spell level. Robust standard errors clustered at the individual
level are in parentheses. ***, **, and * denote significance at the 1, 5, and 10 percent level, respectively.
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Figure F3: High-Skilled Workers to Join GV-focused Firms

Notes: Figure shows the event-study results of the dual-credit policy on high-skilled workers joining GV-focused
firms. The year of policy shock is 2018. Each circle indicates the point estimations of the treatment effect of the
interaction effect of high-skilled workers and the post-policy indictor. Worker and year fixed effects are controlled
for. Each vertical dashed line indicates the 95% confidence interval of the treatment effect.
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Figure F4: High-Skilled Workers to Join Newcomers

Notes: Figure shows the event-study results of the dual-credit policy on high-skilled workers joining newcomers.
The year of policy shock is 2018. Each circle indicates the point estimations of the treatment effect of the
interaction effect of high-skilled workers and the post-policy indictor. Worker and year fixed effects are controlled
for. Each vertical dashed line indicates the 95% confidence interval of the treatment effect.
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