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Abstract

This paper studies the impacts of China’s dual-credit policy (joint management of fuel
consumption and new energy vehicle credits) on the electrification of the auto industry. Using
a heterogeneous-firm model, newly assembled data, and difference-in-differences designs, we
document several findings. First, the policy significantly lowers the relative price of electric
vehicles (EVs) compared with gasoline vehicles (GVs). Second, small firms reduce GV production
to avoid credit obligations, while larger firms relatively expand it. Third, fuel economy
improvement slows as EV production serves as a substitute compliance strategy. Fourth,
cannibalization effect discourages incumbents to produce high-quality EVs while newcomers
offer superior products. Fifth, innovation shifts toward EV and intelligence-related technologies,
weakening path dependence. Finally, EV-focused firms hire more skilled labor and cluster in
the most developed regions. Our findings highlight the positive role of the dual-credit policy in

directing technical change towards electrification.
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1 Introduction

The development of electric vehicles (EVs) and related technologies is crucial for reducing
fossil fuel consumption and carbon dioxide emissions. Beyond their environmental benefits,
the rise of EVs is transforming the global automotive industry, with spillover effects on
related sectors such as battery manufacturing and artificial intelligence. However, because EVs
generate positive externalities, private investment in their development often falls short of the
socially optimal level. Designing effective policies to promote EV adoption and innovation
has therefore become a global priority. In addition to supportive measures such as subsidies
and infrastructure investment, regulatory policies have gained increasing popularity among
governments. Yet the impact of such policies on the electrification of the automotive industry
remains under-investigated.

This paper studies how the dual-credit policy-the joint regulation of fuel consumption and
EV production through a credit trading system-reshapes the supply side of the automotive
industry and affects the growth of EVs in China, the world’s largest car market and a leading
country in EV development. We focus on firms’ production decisions regarding scale, pricing,
and product attributes across gasoline vehicles (GVs) and EVs, and on how credit trading and
policy’s dual targets redirect innovation and worker allocation.

The dual-credit policy, formally titled Parallel Management of Corporate Average Fuel
Consumption (CAFC) and New Energy Vehicle (NEV) Credits for Passenger Vehicles, combines
elements of the Corporate Average Fuel Economy (CAFE) regulation in the United States and
Europe with California’s Zero-Emission Vehicle (ZEV) program. Introduced in September 2017
and implemented in April 2018, it (1) requires CAFC credit, calculated as the gap between
firms” average fuel consumption and the compliance level, to be non-negative for every firm
after credit trading; (2) introduces a tradable NEV credit scheme and a 1:1 conversion rate

from NEV credits to CAFC credits (but not the other way round), allowing firms to outsource



CAFC compliance to those with comparative advantages in generating credits; (3) introduces
an NEV credit target for firms whose GV production exceeds a threshold, generating aggregate
demand for EVs that redirects production and innovation; (4) sets calculation methods for both
credits that create targeted demand for a selected set of car attributes.

To understand the impacts of the dual-credit policy, we build a static model of
heterogeneous car manufacturers maximizing profits under two-target regulations. Firms
differ in their technology endowment, factor market prices, and existing product mix. They
choose the composition of their product fleet, product prices, and product attributes to
maximize profits.

The model produces several testable predictions. First, the policy implicitly imposes a
larger net tax burden on GVs than on EVs. Second, GV production becomes more concentrated
because medium-size producers scale down to avoid NEV credit targets, whereas large
producers relatively expand production. Third, producing EVs is more effective than lowering
GV fuel consumption for meeting CAFC targets, reducing incentives to improve fuel economy.
Fourth, newcomers build higher-quality EVs than incumbents. Fifth, optimal attribute choices
are positively correlated with domain-specific technology endowments. Finally, optimal
demand for specific types of talent depends on attribute choices, output elasticities, and wages.

To test these predictions, we conduct the empirical analysis in two steps. In the first step,
we examine manufacturers” production responses. We study effects on both the quantity and
the quality of cars produced, measuring quality with a set of car attributes. We also distinguish
between incumbents and new entrants following the policy shock. In the second step, we
explore manufacturers’ input responses, focusing on the impacts of the dual-credit policy on
innovation and workforce allocation.

The policy is economy-wide, leaving no pure control group. We therefore test model-based
predictions with difference-in-differences and event-study designs that define treatment and

control groups around policy-defined thresholds and predicted margins of adjustment, based



on pre-determined firm characteristics. To establish causality, we assess parallel pre-trends
between the treatment and control groups. We also account for concurrent demand-side
interventions, including national/local purchase subsidies, tax exemptions, and charging
investments, with year fixed effects and additional controls where relevant.

To support the empirical analysis, we use various data sets. First, we draw on
administrative records of car production and credits. Second, we compile a new data set
that covers the (near) universe of all new cars introduced by manufacturers and augment it
with detailed specification-level data from a leading car information-sharing platform. For
innovation, we compile patents filed by car manufacturers, their key shareholders (those
holding more than 25% ownership), and all affiliated firms wholly or partially owned by
those shareholders. Finally, we collect LinkedIn profiles of China-based users who worked
for car manufacturers between 2010 and 2024 to describe workforce allocation within the auto
industry.

We document several findings consistent with the model predictions. First, we find
that the relative retail price of EVs compared with GVs falls by 48 log points after the
policy shock. This sharp decline coincides with a reduction in GV production and a rapid
growth in EV production. Decomposing this relative price drop indicates that the credit
value directly generated by the policy explains 1/4 of the reduction. Second, firms whose
pre-period GV production exceeded the threshold cut their GV output by 26 log points,
and among these firms, the reduction is mainly driven by relatively smaller ones. Third,
tirms with above-median pre-period CAFC levels significantly increase EV production but
do not reduce GV fuel consumption more than their below-median counterparts, leading to
slower improvement in fuel economy of GVs. Fourth, but of the lack of competition with
their own products, newcomers build better EVs than incumbents, especially on attributes
valued by consumers but not rewarded in credit calculations. Fifth, after the policy shock,

path dependence in innovation becomes much weaker, suggesting that the policy induces



firms to work in EV-related and intelligence-related fields rather than those where they hold
comparative advantage. Moreover, the policy shock induces newcomers to increase innovation
in automobile-related fields, especially EV-related technologies even before they launch their
first car. Finally, EV-focused firms are more likely to locate in developed regions with a larger
talent supply in EV-related fields.

Our findings suggest that the dual-credit policy accelerates the development of the EV
industry and directs innovation toward EV-related fields. The free trading of credits enables
the market to select firms with comparative advantages to supply credits. In this sense, the
implicit subsidies induced by the policy help circumvent the common criticism of industrial
policies that the government may fail to pick the right “winner.” That said, even with
newcomer entry and talent reallocation enhancing efficiency, the price wedge induced by the
policy could still contribute to misallocation and deadweight loss. A comprehensive welfare
analysis of the dual-credit policy is left for future research.

This study contributes to several broad strands of literature. First, this paper adds to a
recently surging literature on the development of EV. Previous literature investigates multiple
demand-side factors that affect EV adoption, including purchase subsidies (Barwick et al.,
2024a; Hu et al., 2025; Muehlegger and Rapson, 2022; Remmy, 2024; Sinyashin, 2021), tax
exemptions (Allcott et al., 2024), some non-monetary incentives such as released driving
and licensing restrictions (Li et al., 2023, 2022; Zhang et al., 2018), charging infrastructure
supports (Dorsey et al., 2025; Li et al., 2017; Springel, 2021), and other policies (Davis et al.,
2025; Dugoua and Dumas, 2024; Forsythe et al., 2023). Recent research by Fang et al. (2025)
evaluate the complementary effect of high-speed railway on EV adoption. However, the
supply-side behavior during the transition from GV to EV is largely under-investigated. A
notable exception is the study by Li (2023) that looks at how the compatibility of charging
standards affect EV producers’ investment in charging infrastructure. This study examines

how a key supply-side intervention reshapes firms’ production, innovation, and hiring.



Second, this study contributes to the literature on directed technical change, especially
directed clean innovation (see Hémous and Olsen, 2021, Popp et al., 2010, and Popp, 2019 for
excellent reviews). A large number of theoretical works that analyze the interplay between
input prices and directed technical change (Acemoglu, 1998, 2002; Acemoglu et al., 2012,
2016; Loebbing, 2022). Recently, there have been growing empirical results on the causes and
consequences of directed technical change (Acemoglu et al., 2023; Aghion et al., 2024; Calel
and Dechezleprétre, 2016; Hanlon, 2015; Hassler et al., 2021; Gugler et al., 2024). Some studies
go beyond input price and market size as the drivers of directed technical change, turning to
broader settings, such as output price shocks, in triggering directed technical change (Aghion
et al.,, 2016, 2023). This study follows the latter strand of literature and regards the dual-credit
policy as generating a wedge between EV and GV prices, which in turn changes the production
and innovation behavior of firms.

Third, this study contributes to the literature on regulations in the automotive industry.
Given the significant environmental impacts of vehicle use, regulations on fuel economy
and emissions are prevalent worldwide. Many studies examine these regulations” effects on
automakers’ attribute choices (Jacobsen, 2013; Klier and Linn, 2016; Knittel, 2011; Leard et al.,
2023), vehicle scrappage (Jacobsen and Van Benthem, 2015; Jacobsen et al., 2023), as well as
collusion, gaming, and other strategic behaviors (Alé-Chilet et al., 2025; Anderson and Sallee,
2011; Reynaert, 2021). To the best of our knowledge, the existing literature mainly focuses on
the product space that include only gasoline vehicles. In this study, we add electric vehicles as
an additional product type in automakers’ choice sets, and study the substitution of GVs with
EVs as well as the attribute choices of each type. Accordingly, this study bridges the literature
on regulation and directed technical change by examining directed changes in the types of
products chosen by firms, in addition to R&D or patenting behavior.

Finally, this paper contributes to the literature on the effectiveness of industrial policies.

Understanding the efficacy of industrial policies has been an active topic in economics (refer



to Juhdasz et al., 2024 for an extensive review). Recently, Lane (2025) investigates the role of
industrial policies, mainly credit and export policies, in advancing industrialization in South
Korea. Kantor and Whalley (2025) reviews the effect of public R&D in fostering manufacturing
growth by examining the space competition between the US and the Soviet Union. Barwick
et al. (2025) discuss the relative performance of different parts of industrial policy, including
differential targeting subsidies and consolidation policies, in stimulating shipbuilding in
China. Closely related to this paper, Barwick et al. (2024b) analyze the relationship between
industrial policies—mainly credit and subsidies—and innovation in EV-related fields. In this
study, we regard the dual-credit policy as not only an emissions regulation for cars, but also an
industrial policy that targets EV development in China because it induces implicit subsidies
toward EVs. Unlike many industrial policies studied in previous literature, regulations like
the dual-credit policy do not impose an explicit fiscal burden on the government. In this sense,
the role of regulation in directed technical change and accompanying product change sheds
light on effective industrial policy design.

The rest of the paper is organized as follows. Section 2 introduces the dual-credit policy
and the data sets used in this study. Section 3 shows some stylized facts regarding the Chinese
automotive industry in the studied period. Section 4 builds a theoretical framework and
derives testable implications of the impacts of the dual-credit policy. Section 5 discusses the
empirical strategies for identifying the impacts of the policy. Section 6 shows the results of
the first step of the empirical analysis. Section 7 shows the results of the second step of the

empirical analysis. Finally, Section 8 concludes.



2 Background and Data

2.1 CAFC regulation before the dual-credit policy

In 2013, the Chinese government introduced the Corporate Average Fuel Consumption
(CAFC) credit regulation. CAFC credits are computed at the firm-year level as the difference
between the target fuel consumption and the firm’s actual corporate average fuel consumption
levels. The target is determined by each vehicle’s curb weight and the number of seats (see
Appendix B.1 for details). If actual fuel consumption exceeds the target, the firm records
negative credits; if it is below the target, the firm earns positive credits.

Compliance and enforcement operate at the firm level, and inter-firm transfer or trading
of CAFC credits was not permitted. Firms with negative credits face administrative penalties,

such as restrictions on capacity expansion and the approval of new models and investments.

2.2 NEV credits and dual-credit framework

Following policy consultations in September 2016 and a draft for comments in June 2017, the
government introduced Parallel Management of Corporate Average Fuel Consumption and New
Energy Vehicle Credits for Passenger Vehicles in September 2017, adding New Energy Vehicle
(NEV) credits and linking them to the CAFC system. The policy took effect on 1 April 2018. The
NEYV credit regulation is similar in spirit to California’s Zero-Emission Vehicle (ZEV) program.
Each year, a firm’s NEV credit target is set in proportion to its total gasoline-vehicle production.
Firms generate positive NEV credits by producing battery electric vehicles, plug-in hybrid
electric vehicles, and fuel-cell electric vehicles. Each technology has its own credit formula
based on vehicle attributes; Appendix B.2 summarizes the rules.

The NEV target applies only to firms whose total gasoline-vehicle production exceeds
30,000 units. However, the target is calculated on total production rather than only the

increment above 30,000 units, creating a discontinuity in incentives at the threshold.



Since the dual-credit system’s introduction (announced in 2017; implemented in 2018), it
has been revised twice—first announced in 2020 (implemented in 2021), and again in 2023. As
shown in Appendix B.2, across revisions the government tightened requirements by adjusting
per-vehicle crediting rules (e.g., multipliers) and raising effective targets, making compliance
progressively more stringent. This pattern suggests policymakers view the dual-credit policy

as an ongoing instrument to support EV development.

2.3 Trading, banking, and clearing of credits

Credit deficits for both CAFC and NEV are announced in June of the following year. Firms
then have a three-month window to clear their balances. Failure to do so triggers strong
administrative penalties (e.g., restrictions on introducing new products, approving new
investment projects, and expanding production capacity). In practice, firms almost always
clear their balances.! Accordingly, we assume firms clear annually or at least plan under that
expectation.

CAFC credits are not freely tradable. Transfers are allowed only among “connected firms”
as defined by regulation (see Appendix B.3 for details). Positive CAFC credits can offset only
negative CAFC credits, not NEV deficits. By contrast, NEV credits are tradable between firms
and can offset both NEV and CAFC deficits at a 1:1 rate. Transactions occur bilaterally and are
executed on a government-run trading platform rather than through an open marketplace.

Firms may bank both CAFC and NEV credits for future use but cannot borrow credits from
future production. While in theory firms could contract over future credits, such arrangements
appear rare given the small number of active traders, regulatory uncertainty from evolving
credit rules, and limited price transparency. We therefore assume firms do not trade credits

in advance. In addition, credits generally cannot be used to offset deficits from prior years,

IPublic information indicates that uncleared deficits accounted for about 2.1%, 0.5%, and 0.1% in 2019, 2020, and

2021, respectively.



with limited exceptions in 2020-2021. In other words, a given year’s negative NEV balance
can typically be offset only with NEV credits generated on or before that year. Banking allows
firms to smooth compliance costs intertemporally. However, because firm-level records of
banking and trading are not observed, we do not model banking behavior empirically and
abstract from it in the main analysis.

It is worth noting that only production and imports for domestic sales are included in
credit calculations; exports are excluded. This aligns with the policy’s objective of reducing
domestic fuel consumption and improving local environmental quality. Accordingly, our

analysis focuses on domestic production and imports, excluding export volumes.?

2.4 Other simultaneous interventions related to EV development

Alongside the dual-credit policy, other concurrent policies aim to promote electric vehicles.
These policies and their dynamics may also affect EV production decisions.

First, the government has provided direct purchase subsidies for consumers who buy
electric vehicles since 2010. The central government subsidy has decreased over time.
Appendix B.4 provides details on the evolution of national subsidy levels. The post-2017
phase-out suggests that subsidies were not the main driver of EV development after the
policy’s introduction. Second, EV buyers are exempt from the vehicle and vessel tax and
the vehicle purchase tax. The vehicle and vessel tax ranges from 60 CNY (8.4 USD) to 5,400
CNY (760 USD) according to displacement level. The vehicle purchase tax is typically 10%
of the price, with some tax deduction for low-displacement vehicles during 2015 to 2017.3

Third, the government provides fiscal subsidies and direct investments to build charging

2Some firms may respond on the export margin (e.g., reallocating models to export markets), which could affect
revenues, profits, and capacity utilization. These adjustments do not directly affect our main outcome variables
and are beyond the scope of this paper.

3There is a 30,000 CNY (4,200 USD) cap imposed for purchases after 1 January 2024. After 1 January 2026, the
vehicle purchase tax is no longer waived but is reduced by 50% for EV purchases. The tax reduction is capped at

15,000 CNY (2,100 USD).



infrastructure. See Appendix Tables B2 and B3 for differential subsidy levels across regions.
Local governments also provide their own subsidies toward charging infrastructure.
Understanding the impacts of these simultaneous policies is beyond the scope of this paper.
However, we emphasize that these policies do not compromise our main objective of assessing
the impact of the dual-credit policy for two reasons. First, these other interventions are mostly
demand-side, affecting consumer demand for EVs relative to GVs. Throughout, we focus
on supply-side dynamics. That is, we compare firms by product fleet, market entry timing,
and technological endowments. Although some firms may disproportionately focus on GV
or EV production, there are no ex ante restrictions on the choice of product mix. Therefore,
we treat firms as equally affected by demand-side policies. Second, most of these policies are
implemented at the national level. In the empirical analysis, we include year fixed effects,
which absorb the effects of national policies and much of the regional policy variations that
are proportional to the national level. Also, there are no ex ante restrictions on which car
manufacturers can operate in which regions within the country. In this case, car manufacturers

are equally exposed to regional policies.

2.5 Data

We assemble several new datasets in this study. Here we provide a brief introduction to the
data sets used in this paper, with more details in Appendix A. Before introducing the data,
note that this study focuses on passenger-vehicle production for domestic sales in China. No
commercial vehicles and no vehicle exports are included in our data.

There are three main datasets used in this study: (1) a newly built dataset that provides
rich administrative information on production and attributes of the (near) universe of new car
products in China from 2010 to 2024; (2) extended attributes, prices, and sales for the majority
of car products in China from 2010 to 2024 obtained from autohome. com; and (3) production,

import, and credit records of all active car manufacturers from 2013 to 2024.
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For the administrative new-car product dataset, we first collect the Announcements
for Vehicle Manufacturers and Products. Each announcement documents which original
equipment manufacturer introduces which new product. The detailed trim level information
of each car product is collected from the Road Motor Vehicle Manufacturers and Products
Information Inquiry System.* In this system, we can search and identify trim-level new
car products.5 The detail information include the manufacturer, brand, release date,
production location, weight, size, and supplier information for engines, batteries (for EVs),
and ABS systems. To further supplement the data with performance measures, including
fuel consumption, range, battery capacity, etc., we also collect information from the China
Automobile Energy Consumption Query System and multiple electric-vehicle catalogues
released by the Ministry of Industry and Information Technology. Together, we build a dataset
of about 20,000 trim-level car products introduced from 2010 to 2024.

This dataset offers several advantages over existing datasets. First, it provides more
granular information than the model level. With trim-level data, we can distinguish variants
and provide a more precise picture of product innovation and upgrading. Second, this dataset
offers a complete picture of all new car products in the market because every car product must
be announced by the Ministry of Industry and Information Technology to be eligible for sale.
This ensures that we do not miss unpopular models with low sales. Finally, this dataset focuses
on new car products, which is particularly suitable for analyzing automotive innovation and
the dynamics of car manufacturers.

In addition to the above dataset, we collect detailed information on car attributes at the

specification level from autohome . com, covering 2010-2024.° The key advantage of this dataset

4https://govs.miit-eidc.org.cn/miitxxgk/gonggao_xxgk/index.html.

5In this paper, we use manufacturer code plus 4-digit product code to define models of vehicles. And we use the
complete trim code, consisting of manufacturer code, 4-digit product code, classification code, and customized
code, to define trims of vehicles. See Appendix A for details.

bSpecification level is similar to the trim level discussed above. While different trims satisfy the condition that each

trim should have substantial differences in attributes, different specifications may only differ in attributes that are
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is that it provides model-month sales and specification-level prices. In addition, it provides
information on a much larger set of attributes, especially those related to vehicle intelligence.
For example, we can observe whether a specification supports fast charging, whether it is
equipped with driver-assistance features, and the vehicle’s operating system. This information
is valuable for defining a high-quality car. However, this dataset also has drawbacks that
prevent us from using it as the main dataset for car products. First, it does not cover the
universe of new car products. Second, missing data are more prevalent. Third, in this dataset,
models and specifications are not uniquely matched to individual car manufacturers. In
Appendix A, we provide more details on linking this dataset with car manufacturers so that
we can distinguish newcomers’ products from those of incumbents.

Administrative records of annual production, imports, and credits are publicly accessible
from annual accounting reports released by the Ministry of Industry and Information
Technology.” We also observe calculated CAFC and compliance levels of fuel consumption
from those reports. Because this list includes all active car manufacturers in the market that
are subject to the dual-credit policy, we use these reports to identify firm entry and exit.

Except for the main data sets introduced above, we also collect data to describe the
innovation activities of car manufacturers and the labor market of the automotive industry.

Technology and innovation are measured by patents in this study. To measure innovation
at the firm level, we collect all patents filed through the China National Intellectual Property
Administration (CNIPA) from Google Patents, covering 1985-2024.

Car manufacturers are often part of large conglomerates. While each car manufacturer
produces vehicles as the final product, many innovations related to car manufacturing occur
outside the manufacturer. To measure manufacturers’ innovation more accurately, we use

patent data for all car manufacturers, their key shareholders, and affiliated firms. Covering the

not related to driving performance, such as the interior design.

"https://www.miit.gov.cn/gyhxxhbwjcx/index.html
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full network of shareholders and affiliates provides two advantages. First, ignoring affiliates
would miss a large share of relevant patents. As shown in Appendix Figure A2, about
70% of all patents are held by affiliates rather than manufacturers; the proportion is similar
when focusing on car-manufacturing domains. Second, for newcomers who enter after the
dual-credit policy, including affiliates of the key shareholders allows us to observe pre-policy
innovation, enabling an event-study design to analyze how their innovation responds to the
policy shock. In practice, key shareholders are those who directly or indirectly hold 25%
or more of a manufacturer’s shares. Affiliated firms are those held by car manufacturers
and their key shareholders. To identify key shareholders and affiliates, we manually collect
firm ownership structure data from tianyancha.com, a leading Chinese platform for firm
registration information. Appendix A shows a sample page from tianyancha.com. In sum, we
leverage more than 1.5 million patents for the network defined above. This dataset should fully
capture manufacturers’” innovation behavior but does not necessarily include all car-related
innovations.®

Following prior literature, we categorize patents into EV-related and GV-related based on
International Patent Classification (IPC) and Cooperative Patent Classification (CPC) codes
(Aghion et al., 2016; Barwick et al., 2024b). In addition, we define intelligence-related patents
related to vehicle intelligence, human-device interaction, and autonomous driving. To our
knowledge, this is the first study to categorize intelligence-related patents. We view this as
a valuable addition to the literature, as vehicles are now not only transportation devices but
also smart devices that provide multimedia entertainment and incorporate Al for autonomous

driving.” While intelligence-related features are more prevalent among EVs, we do not treat

8For example, research institutions and universities also hold many car-related patents.

9In practice, EV-related patents cover the EV production process, including battery technology, charging systems,
electric powertrain, and vehicle control systems based on electric power. GV-related patents cover the GV
production process, including fuel systems, internal combustion engines, transmission technologies, exhaust
treatment, and vehicle control systems based on fuel power. Intelligence-related patents cover vehicle intelligence

(but not general Al), including autonomous driving, head-up displays, human-vehicle interaction systems, and
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them as exclusive to EVs; rather, they are general technologies that apply to both EVs and
GVs. See Appendix Table Al for all IPC and CPC codes used to define EV-, GV-, and
intelligence-related patents.

Finally, the data of labor market in the automotive industry comes from LinkedIn profiles
registered in China and captured in a June 2025 snapshot. To construct the sample, we first
identify all car companies and car groups in the Chinese automotive market based on the list
of original equipment manufacturers. In total, we identify 55 groups. We then focus on profiles
that worked in at least one of those groups during 2010-2024. The final sample includes 173,320
user profiles and 420,322 job-spell records. From these records, we identify employers and job
positions and reconstruct individual job histories. In addition, we observe education, gender,

and ethnicity for individuals when the information is available in the profile.

3 Descriptive Evidence

With the above datasets, we document several stylized facts that characterize the Chinese
automobile industry since 2010.

First, Figure 1 shows the dynamics of new car products in China. Before 2014, EVs
accounted for only a minimal share of new car products. However, that share has surged
over the past decade. By the end of 2024, more than 80% of new vehicles introduced to the
market are EVs, especially battery electric vehicles (BEVs). This fact echoes the surge in EV
penetration in the automobile industry.

Second, the performance of EVs improved dramatically in the past decade, especially
compared with the nearly stagnant attributes of GVs (see panels A and B in Figure 2). Among
multiple attributes, the improvements in range and battery capacity are the most remarkable.

At the same time, we also observe significant improvements in maximum speed and battery

V2X networking.
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Figure 1: Share of New Products

Notes: Figure shows the dynamics of the share of new trims of battery electric vehicles (BEV), plug-in hybrid
vehicles (hybrid) and the sum of these two. Each triangle and each circle is based on the data from one
Announcement for Vehicle Manufacturers and Products. The black dots indicate the average of the total share of
BEV and hybrid within a calendar year.

energy density. By contrast, improvements in GVs are not obvious, even for the same attribute
like maximum speed. Both EVs and GVs exhibit growth in curb weight, indicating a change
in consumer preferences; however, the change for GVs is also less pronounced. Finally, it is
worth noting that average fuel consumption remained stable over the last decade, even as the
government sought to improve fuel economy over time.

Remarkably, these improvements occur not only in key transportation attributes of EVs
but also in attributes that make EVs smart devices like smartphones in the era of intelligence.
Notably, the improvement in equipping EVs with a system-on-chip (SoC) far exceeds that
for GVs (see panels C and D in Figure 2). A system-on-chip is one of the key features that
determines a vehicle’s computational capacity, which in turn determines its smartness. The
relative advantage in EVs suggests that innovation efforts may have shifted from GV-related
tields to EV-related fields.

Third, the automobile market has undergone substantial restructuring since the policy’s
implementation. The largest gasoline vehicle manufacturers in China are mostly joint ventures

between foreign automakers and domestic firms (see panel A of Figure 3), and foreign-branded
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Figure 2: Dynamics of Vehicles’ Performance

Notes: Figure shows the dynamics of vehicle attributes. Each marker indicates the average level of a year
compared with the average level in 2015 (which is normalized to be 1). Data source: administrative new car

product data.

cars take up most of the Chinese GV market. The EV side of the market looks markedly

different (see panel B of Figure 3). On the one hand, many key EV manufacturers are new

to the market. On the other hand, most key EV manufacturers are domestic firms rather than

joint ventures.'”

Consistent with the above fact, before 2018, few manufacturers left the market, indicating

a relatively stable market structure. Afterwards, the number of firms leaving the market

increased markedly (see Figure 4). Yet, the total number of active car manufacturers peaked

around 2018 as well, indicating the even more newcomers entered the market.

These

10Recent research by Bai et al. (2020) on the “quid pro quo” policy in the Chinese auto industry documents the

technological advantages of foreign automakers in GV production and the technology spillovers from them to

domestic firms. Given these advantages, along with the accumulated experience and “know-how” of existing

joint ventures, the leading position of new domestic manufacturers in EV production is surprising.
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Figure 3: Top Manufacturers in the Automobile Market

Notes: Figure shows top manufacturers of gasoline vehicles (GVs) and electric vehicles (EVs) in the market. The

y-axis reports residualized sales per model derived from manufacturer fixed-effect estimates. The regression
controls for body type, energy type, and year fixed effects, using data from autohome . com. Results are
qualitatively robust with or without price controls. See Appendix C for details.

newcomers mainly specialize in EV production. Their market shares have grown rapidly since

entry, reaching about 13% of total production in 2024 (see Appendix Figure C2).
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Figure 4: Number of Manufacturers Leaving the Market

Notes: In this figure, bars show the dynamics of the number of manufacturers leaving the market, while triangles
show the dynamics in the total number of active manufacturers. For a given bar indicating leaving manufacturers

in a year t, it means that this number of manufacturers is last observed in year ¢ in the data. Data source:
administrative production records of each original equipment manufacturer.
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4 Theoretical Framework

This section introduces a theoretical framework for consumer choice and firm behavior to
understand the impacts of the dual-credit policy. The model builds on existing work about
regulations in the automotive industries (Jacobsen, 2013; Reynaert, 2021). Unlike in previous
literature where there are only one regulation of fuel consumption on vehicles, here there are
two regulations imposed. In this model, firms choose between different strategies to cope with
the regulatory targets for both CAFC credits and NEV credits. The interplay between GVs
and EVs production decisions are absent in previous literature. We derive several testable
implications from the model, which serve as the basis for the empirical analysis in Section 6

and Section 7.

4.1 Setup

The market is defined as the domestic market observed in each year y.!! There are F firms in
the market, denoted by f € {1,2,..., F }.12 There are | + 1 products in the market, with the
outside product denoted by j = 0 and different models of vehicles denoted by j € {1,2, ..., J}.
Each firm offers part of the | products available in the market. The ownership structure of
product is capture by a | x | matrix ®¢, where the j — k element equals one if product j and
product k belong to the same firm f.
Demand

There is a measure of Z consumers in the market. For simplicity, we assume that I is
constant across years. Allowing I to vary across years would not affect our results. Consumers
make discrete choice among different products to maximize their utility. Quantity of product

consumed is not considered because in most cases people buy one car at a time. Consumers

1Because export is not included in the dual-credit policy, here we do not take export into account, assuming that

all car manufacturers sell only in the domestic market.

12n this simplified model, we consider each firm as an independent decision maker, abstracting away the affiliation

structure of large car manufacturing groups.
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are assumed as homogenous in this simplified model. The indirect utility of consumer can be

written as:

gy = €oy

iy = xjyp* —apjy +&+ 1y tey, j=12...,]
where 1o, captures the utility of choosing the outside good 0 in year y and u;, captures the
utility of choosing a specific car j in year y. Observed car attributes are captured by x;,, while
car price is denoted by pj,. Product fixed effect {; and year fixed effect 7, are included to
capture time-invariant product characteristics and general time trends, respectively. Finally, ¢;,
is the idiosyncratic preference shock. Suppose ¢, follows a Type-I extreme value distribution,

we have the following logit choice probability of product j:

_ exp (—apj, + &+ 1, + xj, )
1+ Z{:l exp (—zxply +¢ 4T+ xly,Bx)

Sjy

The demand for each product j can be written as the product of product share s;, and the
market size 7:

qjy = sjyL

Supply

In each period, firms produce different cars to maximize profits. The firm decisions are
characterize by the composition of product fleet J 7, as well as the price p;, and attributes x; of
each product j. At this stage, we first consider the maximizing problem given the product fleet
of firms. Under the dual-credit policy, we can write firm’s maximization problem as follows:

max 7y = ) (pj — ;) q; + F8 (Q%, Q%) + F° (Q%,Q°)

pjLjt j
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where

I 5 (w.) g I g
8 (Qg’ Qe) — /\]g( ijl i] (w]) qj - Z]j—l €jd; . Qg
Zj:l qj Z]’:l W

compliance level actual FC

F(QQ) =25 | L k(r)a; —1(Q%>30000)-7- Q8
jere

—_—— credit target
attribute-based credit

where ¢; is the marginal cost of producing product j. Under an implicit assumption that
the car market clears, g; is the number of production and demand of product j. We use
F&(Q8,Q°) and F° (Q8,Q°) to summarize the shadow revenues from CAFC (g) and NEV (e)
credits, respectively. They are both functions of firm-level aggregate production of gasoline
vehicles (Q?%) and electric vehicles (Q°). We omit the y subscript in the above equations.

Specifically, )\}% and A% are the shadow prices of CAFC and NEV credits, respectively. Here,
we do not use the actual transaction prices of credits. In addition, we allow for firm-specific
shadow prices even though credits are tradable in the market. We define the shadow price
in this way for several reasons. First, the price of credit is determined by bilateral deals,
which vary across deals. Second, the price of credit is not transparent and is not observed by
econometricians. Third, the market size for credits changes across years. It may be the case that
the aggregate supply of positive credits exceeds or falls short of aggregate demand. In either
case, not all costs and revenues from credits are realized, and the actual transaction price of
credits deviates from the shadow price used in a firm’s decision-making process. Finally, we
treat firms as strategically small such that they take the market supply and demand of credits
as given.

CAFC credits are determined by the gap between the average compliance level of fuel
consumption and the corporate average fuel consumption. Firms earn positive CAFC credits
when the average fuel consumption is lower than the compliance level, and vice versa.

The compliance level of fuel consumption is determined by curb weight w;, target fuel

20



consumption ¢;, and a conversion factor 7. The corporate average fuel consumption is the
weighted average of fuel consumption e;, where the weight W; = 1 for gasoline vehicles and
W; > 1 for electric vehicles (see Appendix B.1 for details of W)).

NEV credits are determined by car attributes x;, including range, battery energy density,
and electricity consumption; the volume of gasoline-vehicle production Qg; and the target
factor . Appendix B.2 summarizes details of positive NEV credit calculation based on car
attributes. -y increases over time (see Figure B4). Notably, only firms with gasoline-vehicle
production exceeding 30,000 units are subject to the negative NEV credit. However, the target
factor applies to total gasoline-vehicle production rather than only the incremental part above
30,000 units. Therefore, there is a discontinuity in the incentive to produce an extra unit of
gasoline vehicle at the threshold.

Take one step backward, given the optimal strategy to maximize profit with a given
product fleet, the profit maximization problem of firms regarding the composition of product

fleet can be written as:

rgllfax Ty = ﬁfy(]lfy) - ny(| Ty )
y

where Cy, is the cost of adjusting the product fleet according to the number of products. We

denote |J| as the measure of product fleet. We define

Cry(| gy 1) = Spy 25y + Cry (| Ty 1)

where zy, is an indicator of firm f introducing EV products for the first time in period y.
Sy is a firm-specific lump-sum cost of building EV capacity. C fy 18 convex, increasing, and

non-negative in the incremental number of products compared to the given product fleet (i.e.,

| Jfy | = [ Jfy—1[)-** Under this definition, reducing the number of products save costs for the

firm. We assume no extra cost for reducing the number of products from the product fleet.

13We omit the conditioning variable | J fy—1 | in this equation.
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4.2 Implications
4.2.1 Production, price, and attribute choices

For the profit maximization problem given the product fleet, we first consider the first-order

derivative regarding g;:

o7tf oLy, 9L;
—~ =pi—c+ AL+ AL 1)
og; " " ag T g
where L‘J% and L% are the net credit functions of CAFC credit and NEV credit, respectively. For
CAFC credit, we have:
L%

where Q = Y. Wjgj is the weighted production for CAFC calculation, and E = Y.jejqj is the

actual fuel consumption.

For NEV credit, we have:
Wi | eree 95 N
e Lo, jeay, —v, j€GV.

Qe 08

Defining T as the tax burden of the dual-credit policy imposed on one additional unit of

product:
oL oL¢
T=-A—L L
b g oy,

we draw the following implication:

Implication I: The tax burden of the dual-credit policy imposed on a gasoline vehicle is always
larger than that on an electric vehicle.

The argument is straightforward. Producing a gasoline vehicle generates an ambiguous
impact on the CAFC credit, depending on the vehicle’s fuel consumption level. However,

it certainly generates negative NEV credits when total gasoline-vehicle production exceeds
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30,000 units. By contrast, producing an electric vehicle always lowers average fuel
consumption and generates non-negative NEV credits. Moreover, electric vehicles lower
average fuel consumption more effectively than any gasoline vehicle with positive fuel
consumption. Therefore, the dual-credit policy implicitly taxes gasoline vehicles and
subsidizes electric vehicles (Reynaert, 2021), creating a price wedge between these two types
of vehicles.

In addition, when we look at the production decisions of firms, we can draw the following
two implications:

Implication II: There is a divergence in gasoline-vehicle production: medium-size producers reduce
GV production, while large producers increase it.

There is a discontinuity (—yQ¥¢) in the incentive to produce GVs at the threshold. As shown
in Appendix D.1, assuming that increasing GV production is costly, there exists Q% > Q¢
such that those with Q8 < Q8 will decrease Qf to below Qf. At the same time, large GV
producers may increase GV production to clear the market. The logic is that those who would
otherwise buy gasoline vehicles that are no longer available will switch to close substitutes,
that is, gasoline vehicles by other producers.

Implication III: There is a strong incentive for GV producers to make EVs to reduce CAFC.
Compared with the pre-policy period, the incentive to lower fuel consumption for GVs is weaker.

To see the impact of producing one unit of a gasoline vehicle versus an electric vehicle,
consider the case where a firm produces only gasoline vehicles and existing gasoline vehicles
have fuel consumption equal to the compliance level. Then we have Q/ QO=1E/Q= éjn. For

) ) _ oL _ ) L% _
a fuel-saving GV with e; = 0.9 x &j7, aTva = —0.9 x &jn. For an EV with ¢; = 0, qu = —Wen. In
2017, Wj = 5, meaning that producing one EV is equivalent to 50 fuel-saving GVs in reducing
CAFC. This example highlights the advantages of producing EVs in driving down CAFC: EVs
not only have zero fuel consumption but also have a large weighting factor that amplifies their

impact on CAFC.
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Regarding price and attribute choices, we can derive the following first-order derivatives:

oL g
ap:(1—l—/\fonLgoAp—i—)\?onLeoAp)oq+ CI)oApnl
margin effect market share effect
oL ! 8 e e
— = —¢; +A0VXLE oA, + A0V LoAy |oq+ PoAm
ax \/5 f f —_—

cost effect market share effect

credit effect

where L is the Lagrangian. VL is the Jacobian matrix of first-order derivatives of credit
function L with respect to k = p, x. A is a | x | matrix in which the i — j element indicates the
derivative of market share s; with respect to k; = pj, x;. o is defined as the Hadamard product.
® is ownership matrix, and m = p — ¢ — 7 is the mark up of ] vehicle.

The first-order derivative of price shows the trade-off between increased markup of
vehicles and the losses from reduced market shares. The first-order derivative of attributes
shows the trade-off between increased marginal cost and the benefits from credit earnings and
increased market shares (supposing consumers have positive willingness-to-pay for improved
attributes). In a multinomial logit type of demand as here, we can write out the elements in A

as the following:

o i (msi), k=i g JPSi(L=s), k=]
op;

= E)Tc] =
(sgS;, k #j —B*sksj, k#j

Cannibalization Effect: The increase of market share of vehicle j always happen in
accompany with the reduction of market shares of other existing products.

Implication IV: Newcomers introduce higher-quality EVs, especially in attributes valued by
consumers but not accounted for in credit calculation.

Proof is in Appendix D.1.

Intuitively, from the profit-maximization problem, there are three incentives for producing

EVs: (1) reducing CAFC, (2) earning NEV credits, and (3) boosting sales. These map to three
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distinct impacts on attribute choice. For (1), any EV works the same in reducing CAFC; there
is no incentive to improve attributes. For (2), the incentive is to improve only those attributes
included in the credit calculation. For (3), there is an incentive to improve all attributes valued
by consumers. Because of cannibalization effect, all else equal, newcomers have stronger
incentives to produce higher-quality EVs, particularly in attributes valued by consumers but
not included in the credit calculation. For incumbents, EVs compete with their own existing
GVs, reducing incentives to improve attributes valued only by consumers and not included in
the credit calculation. That is, incumbents mainly increase EV production in response to the

policy-driven price wedge T.

4.2.2 Product fleet adjustment

Finally, for the step of choosing the optimal size of product fleet, we can get the following

first-order derivative:

oL
W: qx [mg —IPoAym] — c

adjustment cost

market stealing + cannibalization

We denote the added product to be k. The net margin of introducing a new product is the
mark up generated from market stealing minus the cannibalization effect from reduced sales
of other products that belongs to the same firm, which is measured as the weighted average of
mark ups of the affected products with respect to the substitute elasticity. The size of product
fleet increases until the net margin of introducing a new product equals to the increase in

adjustment cost.

4.2.3 Cost minimization problem

To dig further into the impact of the dual-credit policy on firms” input choices, we now focus
on ¢, a key determinant of firm strategy regarding the attribute choices. We assume that there

are multiple types of attributes that are characterized by a. Each type of attribute belongs to
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a technology domain s(a). Firms solve the cost minimization problem of achieving x? level of

each attribute type a:

min ¢; = wa,nhn +1pm,
n

{h} ma
/311 an (5,1
s.t. Af’s(a) (I}jhg )mﬂ > Xg,

Notably, there are N types of workers that jointly determine the production of each type of
attribute. The output elasticity of type n worker in producing type a attribute is 7,,. Firms are
heterogeneous in their domain-specific technology A¢ and the factor prices wy ,, 7.

For simplicity, we assume constant return to scale of the production function (}_; yasr +
b, = 1). Then, with simple algebra (see details in Appendix D.1), we have the optimal cost of

achieving x, to be
* 71312 Sa Yat
¢y, = K 'Af,s(a) Ty <|T| wf,r) - Xg
— —Yat *551 1
where K, = (| [ var ) 0, " is a constant.

Accordingly, the optimal factor demand can be written as:

pro= YorCa e 0aCa
at 4 a
W i

Based on results above, we can get the following implications.

Implication V: The marginal cost of improving a given attribute is negatively correlated with
domain-specific technology endowment. Accordingly, the optimal attribute choice is positively
correlated with domain-specific technology endowment.

Implication VI: The optimal demand for a specific type of talent depends on attribute choice, output
elasticity, and wages.

Furthermore, we argue that firms would locate in places with a larger supply of talent that

fits their attribute choices because a larger labor supply implies lower wages, ceteris paribus.
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5 Empirical Strategy and Identification

Our main empirical strategies are the difference-in-differences and event-study designs.
Because the dual-credit policy is implemented at the national level with no time differences
in implementation, we cannot leverage regional variations or time variations in roll-out in
our analysis. Moreover, the policy affects all active car manufacturers, so there is no never-
treated group. Therefore, we compare car manufacturers with different levels of exposure to
the policy based on their pre-determined characteristics. According to different margins of the
policy setting, there are different measures of exposure used in analysis. We assess parallel
pre-trends between the high- and low-exposure groups to establish causality. The identifying
assumption is that production behavior across firms or products will be on the parallel trend
in the absence of the policy shock. We show that this assumption is reasonable in the following
sections. In addition, we leverage unique policy designs, changes in the policy over time, as
well as exogenous shocks to the automotive industry to provide further evidence on the causal

impacts of the policy (see Section 6.4 for details).

5.1 Step I Empirical Strategies

Implication I implies that the dual-credit policy imposes a larger tax burden on gasoline
vehicles than on electric vehicles, leading to a price wedge between the two types. We estimate

the following model to test this prediction:

6
In(pj) = Y ym BV X tu 405+ A+ Bx - Xy + g )
m=—4,m#—1

where pj; is the manufacturer’s suggested retail price (MSRP) of product j in period t.
m indicates periods relative to the year of policy shock, defined as 2018, the year of
implementation. EV; is a dummy indicating that car j is an EV. We control for a set of attributes

Xjt, including curb weight, horsepower, maximum speed, body type (e.g., sedan, SUV, or
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MPV), cruise control type, parking-assistance type, and indicators for antilock braking, auto
hold, hill-start assist, and related features. Firm fixed effects d¢ captures any firm-specific time
invariant factors affecting prices, such as the pricing strategy. Year fixed effects A; capture
the general time trend in the change of vehicle price. The error term is denoted by ¢j;. The
coefficients of interest are <y,,, which capture the average price gap between GVs and EVs in
period m.

Implication II implies a divergence in manufacturers” incentives of making GVs, which
stems from the threshold for obligatory for the NEV credit target. Here we conduct two
analyses to see how it affects GV production allocation. First, we calculate average GV
production in the pre-policy period (2013-2017) and classify firms with average GV production
above 30,000 as the treatment group. We then test whether these firms are more likely to
reduce GV production to below 30,000 units after the policy shock.!* The empirical model is
as follows:

1(Qf, > Q%) = 26: Ym - Aboves X by + 85+ Ay + €5 3)
m=—5m#—1
where ]I(Qﬁt > Q8) indicates whether firm f has GV production above 30,000. Abovey
indicates whether firm f has pre-period average GV production above 30,000 units. We control
for firm fixed effects of and year fixed effects A;. The error term is denoted by ¢ ft- The
coefficient of interests are 7,,, which should be negative for m > 0 when the policy reduces the
incentives of above-threshold GV producers to to produce extra GVs.
Second, such drop in GV production should be mainly driven by those who are close to the

threshold level. We estimate the following model for firms with above-threshold pre-period

GV production to test this prediction:

6

ln(Qﬁt) = SZ:# 1'ym-Largef X tm+0f + At +ep 4)

4Because there are only about 100 active car manufacturers per year, we do not observe many firms producing

close to 30,000 GVs, limiting our ability to detect bunching of production at the threshold.
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where ln(Qit) is the log of GV production for firm f in period t. Larges is a dummy variable
indicating if the pre-period average GV production of firm f is above the median level among
firms in the regression sample. Other notation follows Equation (3). The coefficient of interests
are 7, which should be positive for m > 0 when the larger manufacturers may increase GV
production relative to smaller ones.

Implication III predicts that the fuel economy improvement slows because of the present of
EV production as an alternative strategy to comply with the regulation. To test this prediction,
we first calculate each firm’s ratio of CAFC to the compliance level in the pre-policy period
based solely on GV fuel consumption. We then classify firms with a ratio above the median
(i.e., higher fuel consumption relative to the compliance level) as the treatment group and those

below the median as the control group. Finally, we estimate the following empirical models:

Ys = Bo + B1 - HighCAFCyy X Posty + ¢ + At + €54 -
Yipyt = Bo + P1 - HighCAFCp; x Post; + BxXjt + 65 + At + €

We estimate two models, one at the firm level and the other at the product level. For the
firm-level regression, we consider two outcomes Y;: the share of EVs in total production and
the ratio of CAFC to the firm-average compliance level based on GVs. For the product-level
regression, we also consider two outcomes Yj(s);: an indicator for j being an EV and the fuel
consumption of j, conditional on j being a GV. We control for firm, year, and product fixed
effects, and product characteristics accordingly. The coefficient of interest ; captures the

relative response in production of the high-fuel-consumption groups.
In Implication IV, we propose that newcomers have greater incentives to improve car
attributes because they are not subject to cannibalization effects like incumbents. This is tested

by investigating the quality of vehicles produced by incumbents and newcomers. We estimate

29



the following model:

Yi(s)e = Bo + B1 - Newcomers 4 Bx Xjr + At + )y (6)

where Yjy); denotes a set of attributes describing the driving performance and the intelligence
of product j in period t; Newcomer indicates whether firm f entered the market in or after
2018. X is a vector of basic attributes, including curb weight and its square, body type, battery
type, and log price for the autohome . com sample. We also control for year fixed effects A;.
Here, we estimate an OLS regression on repeated cross-sectional data without using a panel
structure or a DID approach. This is because there are no pre-period data for newcomers, and
newcomer status is time-invariant. Therefore, the coefficient of interest 1 is only correlational.
It reflects both endogenous selection into entry and the incentive effect from the absence
of cannibalization effect. Suppose the policy shock endogenously induces firms with a
comparative advantage in EVs to enter, which is likely the case; newcomers will tend to have a
lower marginal cost of making EVs and will thus choose higher attribute levels, ceteris paribus.
We cannot distinguish these two sources of variation with reduced-form analysis. The results
provide only suggestive evidence of the incentive effect. That said, as shown below in Section
6, the larger effects from attributes that are not included in credit calculation but more salient to
consumers, compared with those affecting NEV credit calculation but not salient to consumers,

are in line with our prediction in Implication IV and highlight the incentive effect.

5.2 Step II Empirical Strategies

Implications V and VI suggest that firms would turn to EV production after the policy shock.
Accordingly, we predict that after the implementation of the dual-credit policy, innovation
in EVs—relative to GVs—will increase, and this increase will occur regardless of a firm’s

existing technology endowment. Empirically, the dual-credit policy will lead to weaker path
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dependence in innovation and a convergence in innovation trajectories. We estimate the
following model to test this prediction using a Poisson pseudo-maximum-likelihood (PPML)

method:

Patg = exp (Bo+ B1- Kpi—1 X Pres+ B2 - Kyypq X Posty +As+ T+ €5) (7)

where Paty; is the number of patents firm f applied for in period t. K¢, 1 is firm f’s patent
stock in period t — 1, which measures technology endowment and knowledge. The correlation
between lagged patent stock and new patents captures path dependence in innovation. We
allow for differential path dependence between pre- and post-policy-shock periods, measured
by B1 and B, respectively. Pre; equals one for ¢t < 2018; Post; equals one for ¢t > 2018. We
expect f1 > B».

Moreover, Implication V indicates that newcomers start working on automobile-related
innovation prior to market entry. The logic is as follows: newcomers induced to enter the
market have no incentives to conduct automobile-related innovation while they remain out
of the market; after the policy shock, they switch to automobile-related innovation because
it lowers marginal cost. Only newcomers who would have entered in the absence of the
dual-credit policy may have been preparing in advance. To gauge the prevalence of these

“ever-newcomers,” we estimate the following event-study model:

2024
St = Po+ Z Pt - Newcomerg X Ty + Af + T + €4 8)
#=2013,t #2017

where Sy, is the share of automobile-related patent stock among all patents. Automobile-related
patents include the three types defined above (EV-, GV-, and intelligence-related). The
coefficient of interest is ;. We expect B; to be significantly positive after the policy shock
(i.e., t > 2017), even though these firms may not yet be in the market.

To test how talent allocation responds to firms” production composition, we compare
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worker composition between groups that mainly focus on GV production and those that
mainly focus on EV production. Specifically, we calculate the share of new EV trims among all
new products for each group and define those with a share above the median as EV-focused
groups and the others as GV-focused groups. We then run the following regression at the

individual-year level:

2024
Yipr = Z Y- EV_Focusedy X Ty +a; + At + € ©)
1=2012,¢#2017

where each observation is a job record for individual i working in firm f in period t. Yjs); is an
indicator that the job is located in a first-tier city in China (Beijing, Shanghai, Guangzhou,
or Shenzhen). These four cities are the most developed in China and host the largest
concentrations of high-skilled and highly educated workers. We control for worker fixed

effects «; and year fixed effects A;.

6 Empirical Result I: Production Responses to the Policy

In this section, we test Implications I-IV derived in Section 4.

6.1 Overall Responses

Results of estimating Equation (2) are shown in Figure 5. Before the policy shock, the relative
price between GVs and EVs is stable across years and statistically indistinguishable from the
omitted period (2017). This absence of a pre-trend supports the parallel-trends assumption for
identifying the causal effect of the dual-credit policy. In the year of policy implementation, the
relative price of EVs fell by more than 11 log points (significant at the 10% level). The relative
price of EVs continued to decline thereafter, reaching about 59 log points below at the end of
the studied period.

The price change comes from different channels. First, pass-through from reduced
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Figure 5: Policy Effect on the Relative Price of EV

Notes: Figure shows the event-study results of the dual-credit policy on the relative price of EVs. The year of
policy shock is 2018. Each circle indicates the point estimations of the treatment effect (i.e., the coefficient of
EV; X ty in Equations (2)). Each vertical dashed line indicates the 95% confidence interval of the treatment effect.

subsidies to reduced price. Second, price wedge rooted from the shadow price of credits.
Third, other potential channels including other policies, the entry of competitive newcomers,
learning-by-doing, and technological breakthrough in related-fields, etc. Here, the second one
is of interest because it captures the direct impact of the dual-credit policy."

To estimate the shadow price of credits, in Appendix E, we follow the usual practice in the
literature (Barwick et al., 2024a; Hu et al., 2025) to structurally estimate the markup of vehicles
and back out the marginal cost and policy-induced price wedge.'® The procedure consists of
three steps: (1) estimate the coefficient of price on utility with multinomial Logit model, based
on the observed prices, attributes, and sales; (2) estimate the markup and the sum of marginal
cost and credit value of vehicles, based on firm’s profit maximization conditions; (3) estimate

the shadow price of credits based on the sum of marginal cost and credit value, observed car

15The third channel may also reflect the indirect impacts of the policy, but such indirect impacts are difficult to be
clearly quantified. Results in later sections do imply that the policy introduced more competitive newcomers into

the market.

160One caveat of this practice is that, due to data limitation, we impose homogeneous demand for consumers, which

could be too strong to hold.
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and manufacturer characteristics, and credits determined by the policy.

Figure 6 shows the decomposition results. The price faced by consumers net of purchase
subsidies (referred to as consumer cost) is also decreasing overtime, but with a smaller
magnitude in most years after the policy shock. The gap between decrease in MSRP and that of
consumer cost indicates that the phase-out of subsidies indeed drives down the relative MSRP
of EVs, compared with GVs. Its explanatory power increases overtimes, consistent with the
gradual phase-out process. The removal of national subsidy explains about 1/5 of the total
decrease in the post-policy shock period. We can further subtract the shadow value of credits
from the consumer cost for each vehicle. Comparing the decrease in the consumer cost and
that of the consumer cost net of credit value, we can see that the policy-induced price wedge
explains another 1/4 of the decrease in the relative price of EVs. Finally, the consumer cost
net of credit value also drops significantly after the policy shock, indicating that other factors

explain the rest 55% of decrease in EV price.

6.2 Incumbent Responses

In this subsection, we first focus on the responses of incumbent firms.

6.2.1 Concentration of GV production

Results of estimating Equation (3) are shown in panel A of Figure 7. Before the policy
shock, there is no significant pre-trend in the GV production gap between large and smaller
manufacturers. The probability of GV production exceeding 30,000 for the treatment group
dropped significantly by more than 30 log points to around 0.65 after three years of the policy
shock.

Results of estimating Equation (4) are shown in panel B of Figure 7. Again, we do not
observe any statistically significant pre-trend in GV production. After the policy shock, firms

with above-median pre-policy GV production relatively increase their GV production. This
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Relative Effect on Prices

-4 -3 -2 -1 0 1 2 3 4 5 6
Years Relative to Policy Shock

—— Ln(Price) —A— | n(Price-Subsidy)
—&— Ln(Price-Subsidy-Credit Value) Explained by Credit Value
Explained by Subsidy Phase-Out Unexplained

Figure 6: Policy Effect on the Relative Price of EV - Decomposition

Notes: Figure shows the event-study results of the dual-credit policy on the relative price of EVs. The year of
policy shock is 2018. Each marker indicates the point estimations of the treatment effect for different dependent
variables. Circles indicate effects on the log MSRP. Triangles indicate the effects on the log consumer cost, which is
calculated as:

1 + value-added tax rate + purchase tax rate

= RP
Consumer Cost = MS % 1 + value-added tax rate

— Subsidy

Diamonds indicate effects on the log consumer cost net of credit values,where credit values are capture by
—1j = Af x CAFC credit; + A{ x NEV credit;

The gap between circles and triangles (i.e., the green area) indicates the role of subsidy phase-out in explaining the
decrease of relative price of EVs. The gap between triangles and diamonds (i.e., the blue area) indicates the role of
credit value in explaining the decrease of EV relative price. The gap between diamonds and zero (i.e., the red area)
indicates the role of other factors in explaining the decrease of EV relative price. Each vertical dashed line
indicates the 95% confidence interval of the treatment effect.
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result is in line with our prediction in Implication II.

Relative Effect on 1(GV >= 30000)
N
Relative Effect on In(GV Production)

Years Relative to Policy Shock Years Relative to Policy Shock
A: GV Production Exceeding Threshold B: Divergence in GV Production
Figure 7: Policy Effects on GV Production

Notes: The figure shows event-study results of the dual-credit policy on GV production. The policy shock occurs
in 2018. Each circle indicates the point estimate of the treatment effect (i.e., the coefficients on Aboves x t;; and
Larges X ty, in Equations (3) and (4), respectively). Vertical dashed lines indicate 95% confidence intervals.

6.2.2 Reduced effort in improving fuel economy

Implication III focuses on the policy’s impact on attributes of gasoline vehicles. Before the
dual-credit policy, CAFC regulation was imposed on individual firms. There was no trading of
credits, and firms had to meet the regulatory requirements themselves. After the introduction
of the dual-credit policy, firms could compensate credit deficits by purchasing credits from
other firms. In this case, CAFC regulation is no longer binding prior to credit trading.
This is acknowledged in Figure 8, where we observe the share of firms just meeting the
regulatory target (i.e., the fuel consumption level on compliance level ratio is just below 1)
to be significantly higher than just missing it before the policy shock, while such bunching
disappears thereafter.

With credit trading, firms” optimal strategy equates the marginal cost of compliance among
three strategies: improving the fuel economy of GVs, producing more EVs, and buying credits
from others. Substitution effect across strategies predicts that firms will put less effort into
improving the fuel economy of GVs.

Results of estimating Equation (5) are shown in Table 1. As shown in columns (1) and
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Figure 8: Bunching of Distance to Compliance Level

Notes: This figure shows the densities of the ratio of CAFC to the firm-average compliance level in a 5% window
around the threshold. Gray bars denote the pre-policy period; blue bars denote the post-policy period. Values
below 1 indicate compliance; values above 1 indicate shortfall. Both CAFC and firm-average compliance levels are
drawn from administrative records.

(3), firms with pre-period CAFC above the median, compared with those below, experience a
larger increase in the share of EV production and introduce more new EVs following the policy
shock. At the same time, these firms do not put more effort into improving the fuel economy
of GVs (see columns (2) and (4)).

Consequently, the steady decline in GV fuel consumption slows significantly after the
policy shock (see Appendix Figure F1). This result does not imply that the dual-credit
policy worsens environmental outcomes, because EV adoption reduces fuel consumption. A
precise and comprehensive accounting of the environmental impacts of the dual-credit policy
involves not only GV fuel consumption and EV electricity use, but also the impacts of vehicle

manufacturing and electricity production, which is beyond the scope of this research.

6.3 Newcomer Responses

As shown in Figure C2, car manufacturers entering the market after the policy shock are

important. Neglecting newcomers’ production behavior would not provide a complete picture
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Table 1: Policy Impacts on Compliance Strategy

Firm-level Product-level
(1) () (3) (4)
VARIABLES Share of EV CAFC/ EV Fuel
Compliance Consumption

Above-median pre-period x -
Real CAFC x Post 0.067 -0.006 0.130 0.210

(0.032) (0.024) (0.040) (0.147)
Mean 0.145 1.150 0.265 7.128
Observations 931 1,219 16,876 12,311
R-squared 0.695 0.716 0.337 0.434
Firm FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

Notes: Table shows the estimation result of Equation (5). In column (2), CAFC are calculated based solely on
gasoline vehicles. Numbers of observations differ between columns (1) and (2) because the production of EV is
only available after 2016 while the calculation of CAFC and compliance level are available from 2013 onwards.
Numbers of observations differ across columns (3) and (4) because in column (4) we only focus on gasoline
vehicles. Robust standard errors clustered at the firm level are in parentheses. ***, **, and * denote significance
at the 1, 5, and 10 percent level, respectively.

of how the dual-credit policy affects the market.

To test the prediction from Implication IV, we leverage two datasets with detailed
car-attribute information to estimate Equation (6): the new car product data from
multiple administrative data sources and the autohome.com sample. The first data set
includes product-level credits according to the NEV credit formula. Further, we compare
the driving-related performance of EVs—range, battery capacity, battery energy density,
maximum speed, electricity consumption, etc. The second data have more missing attribute
information, but it provides a much larger set of attributes related to vehicle intelligence,
such as fast-charging support, numbers of cameras and sensors for autonomous driving,
system-on-chip, and operating-system performance. These measures are not included in credit
calculations but are important for evaluating the quality and attractiveness of EVs.

Results using administrative data are shown in Panel A of Table 2. Newcomers make EVs
with comparable NEV credit per vehicle to those made by incumbents (col. (1)). However,
EVs made by newcomers offer significantly longer range (col. (2)), even when additional

range does not yield extra NEV credits (col. (3)). For electricity consumption, which is not
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salient to consumers, EVs made by newcomers do not have an advantage (col. (4)). An
interesting comparison lies in columns (5) and (6): the energy density of cars is comparable
between newcomers and incumbents, but battery capacity is 4 log points larger for EVs made
by newcomers. The differential results between attributes that affect NEV credit calculation
but are not salient to consumers and attributes that are not included in credit calculation but
are more salient to consumers are in line with our prediction in Implication III, highlighting
the incentive effect. Finally, we find that newcomers make EVs with a higher maximum speed.
Maximum speed can be regarded as a measure of EV driving performance because there is a
trade-off between maximum speed and range. Newcomers make EVs with both longer range
and higher maximum speed, which shows their advantages in EV-related technology.

Results using the autohome.com data are shown in Panel B of Table 2. EVs made by
newcomers have faster 0-100 acceleration; have more cameras for autonomous driving; are
more likely to support fast charging; are more frequently equipped with a system-on-chip

(SoC); and offer greater operating system (OS) storage.

6.4 Direct Evidence of Production Responses

So far, our empirical results rely on either a difference-in-differences design or a cross-sectional
comparison. Both are subject to potential endogeneity concerns. Specifically, simultaneous
shocks could contaminate the effects of the dual-credit policy. In this subsection, we leverage
exogenous shocks to the dual-credit policy to provide more direct evidence on the policy’s

effects, highlighting the role of specific policy margins in firms” behavior and outcomes.

6.4.1 COVID shock and switch to EV production

First, we leverage the exogenous COVID shock on car manufacturers to show that the
dual-credit policy generates a strong incentive for firms to switch to EV production,

conditional on the implicit subsidy toward EVs.
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Table 2: Incumbents vs. Newcomers on Car Attributes

Panel A: Credit and Driving Performance

(1) (2) (3) (4) () (6) ()
VARIABLES NEV Range Range EC ED Capacity ~ Max.
Credit > limit Speed
Newcomers 0.0901  0.0589*** 0.0591* -0.00553  -0.0118  0.0404**  0.0435**
(0.0578)  (0.0216)  (0.0338)  (0.0139) (0.0102)  (0.0201) (0.0177)
Mean 2.894 5.641 0.528 2.665 4.900 3.697 5.003
Observations 3,561 5,145 3,571 3,383 5,102 5,102 5,553
R-squared 0.858 0.915 0.532 0.648 0.765 0.919 0.818
Panel B: Vehicle Intelligence
(1) (2) ) (4) (5) (6)
VARIABLES 0-100 Camera  Sensor Fast SoC oS
Acceleration Charging Storage
Newcomers -0.573*  0.948** 0.267 0.0659*  0.0668*  0.328***
(0.240) (0.382) (0.297)  (0.0343)  (0.0380)  (0.121)
Mean 7.731 5.395 7.869 0.609 0.155 4.761
Observations 15,628 14,058 13,605 32,638 32,638 4,164
R-squared 0.721 0.532 0.617 0.560 0.391 0.548
Car Category Yes Yes Yes Yes Yes Yes Yes
Energy Type Yes Yes Yes Yes Yes Yes Yes
Release Year Yes Yes Yes Yes Yes Yes Yes

Notes: The table shows estimation results for Equation (6). In Panel A, we use the administrative new-car
product data, while in Panel B, we use the autohome.com data. Dependent variables in Panel A, columns (2)
and (4)—(7) are log-transformed. Dependent variables in Panel B, columns (2) and (3) are counts, and in column
(4) is a dummy indicating whether an EV supports fast charging. “Range > limit” is a dummy indicating
that range is above the upper bound, so higher range does not yield additional NEV credits. “EC” stands for
electricity consumption; “ED” stands for battery energy density; “Capacity” stands for battery energy capacity.
“SoC” stands for system-on-chip. We control for curb weight and its square term, and the number of seats in
Panel A; log price, curb weight and its square term, and calendar year fixed effects in Panel B. The number of
observations differs across columns because of missing data. Robust standard errors clustered at the firm level
are in parentheses. ***, **, and * denote significance at the 1, 5, and 10 percent levels, respectively.

In 2020, COVID severely affected production, sales, and innovation in the automotive

industry, resulting in a large deficit in CAFC credits. As shown in Appendix Figure C3,

market-level CAFC credits turned negative for the first time in 2020.

This large credit deficit implies that the prices of both CAFC and NEV credits would rise

sharply in 2020. To help firms recover from the COVID shock and ease their credit-balance

burden, in February 2021 the Chinese government unexpectedly allowed firms to use NEV

credits generated in 2021 to compensate for 2020 NEV credit deficits. Although only NEV
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credits were explicitly affected by this intervention, the offsetting rules between CAFC and
NEYV credits imply that the intervention also affects CAFC credit balances.

Given expectations of high credit prices, firms hit hard by the COVID shock had strong
incentives to increase EV production in 2021, earn more NEV credits, and reduce credit costs.

If there were no credit-trading system, and if CAFC credit deficits cannot be compensated
by NEV credits, there would be no such adjustment. Therefore, observing this adjustment
points to the dual-credit policy’s design. Moreover, firms” adjustments in 2021 are plausibly
exogenous for two reasons: first, the COVID shock is exogenous to firms; second, permission
to use 2021 NEV credits to offset 2020 deficits was unexpected.

To detect firms” production adjustments, we estimate the relationship between the change
in CAFC credits betweent —2 and t — 1 (ACAFC;_) and the change in EV production between
t —1and t (AEV}). In years other than 2021, we expect a negligible relationship because credits
in t cannot offset negative credits in t — 1. In 2021, however, we expect a strong negative
relationship between the two.

Results are shown in Table 3. Comparing columns (1) and (2), the coefficient is significantly
negative in 2021 but is not significantly different from zero in other years. In columns (3)—(5),
the coefficient of interest is the interaction between lagged ACAFC and an indicator for 2021.
Across three specifications with different controls, we consistently find a significantly negative
interaction coefficient. These results align with our prediction and suggest that a positive NEV
credit price induces firms to switch to EV production. Given the mean of lagged ACAFC being
31,104.11 and the coefficient in column (1), the response to credit shocks induces a 26% of

change in EV production on average.'”

17Calculated as 31,104.11x (-0.0645) /7756 = 0.259.

41



Table 3: Adjustment in EV Production

1) 2) 3) 4) ®)
Sample In 2021 Not in All All All
2021
VARIABLES AEV AEV AEV AEV AEV
Lag ACAFC -0.0645*** 0.0137 0.0142 0.0137 0.0273
(0.0111) (0.0122) (0.0142) (0.0122) (0.0389)
Lag ACAFC x Yr2021 -0.0729*** -0.0782*** -0.0464**
(0.0188) (0.0166) (0.0232)
Mean 7756 3525 4354 4354 2255
Observations 76 312 388 388 217
R-squared 0.616 0.027 0.104 0.124 0.747
Firm FE No No No No Yes
Year FE No Yes No Yes Yes

Notes: Table shows the estimation result of firms” EV production change between periods t and f — 1 with
respect to the change in CAFC credits between t — 1 and t — 2. Observations are at firm-year level. In column
(1), we only look use the data in 2021. In column (2), we use the data excluding year 2021. In columns (3) to
(5), we use the whole sample. Robust standard errors clustered at the firm level are in parentheses. ***, **, and
* denote significance at the 1, 5, and 10 percent level, respectively.

6.4.2 Policy revisions and attribute choices

Second, we leverage policy revisions in 2021 and 2023 to evaluate how the credit-calculation
rules affect firms” attribute choices. Specifically, we expect firms to improve attributes included
in the credit calculation when the criteria are tightened.

The empirical strategy is as follows. First, for any given EV, we calculate its NEV credits
under the three versions of the credit-calculation formula (i.e., the 2018, 2021, and 2023
versions, defined by implementation year).

Second, under each set of criteria, we calculate the distance between the credit and the

upper bound, measured as

m

]

Distance; = (NEV]" —NEV")/NEV"

where NEV/" is the NEV credit of EV j evaluated under the credit-calculation criteria in month
m,and NEV" is the upper bound of NEV credit per vehicle in month .

Third, to convert the data into a panel structure, we average the distance and car attributes
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in each month m and estimate the following empirical model:

—~— m
Xfm— Xfm-12 =P (Distunceﬁm,12—Distancef,m_12) +0r+epm (10)

—~— m

where Distanceg,_1, is the counterfactual distance of all products of firm f in month m —
12 evaluated under the month-m criteria. x¢,, and Distancey,, are the average attribute and
distance for firm f in month m under the month-m criteria. Specifically, we compute x; ,, and
Distancey,,, using data from [m — 6,m] to avoid having too few observations at the monthly
level. To avoid potential contamination, we use only data starting seven months after each
formula change.

The logic is that, holding attributes fixed, a larger reduction in credits after a formula
change implies stronger incentives for firms to improve those attributes. With firm fixed
effects, these responses are exogenously driven by changes in the calculation formula.
Results are shown in Table 4. For range, energy capacity, energy density, and electricity
consumption—attributes included in the credit calculation—all coefficients are negative, and
three are large in magnitude and significant at the 1% level. Placebo attributes such as

maximum speed and vehicle length are unaffected.

Table 4: Adjustment in Attributes with Respect to Policy Changes

1) () 3) 4) (5) (6)
VARIABLES ARange ACapacity AED AEC ASpeed ALength
ADistance -0.334*** -0.264*** -0.164*** -0.0753 0.0240 -0.0162

(0.0784)  (0.0844)  (0.0318)  (0.0805)  (0.0236)  (0.0138)

Mean 0.142 0.143 0.0527 0.0165 0.0293 0.0104
Observations 4,863 4,861 4,861 2,759 4,933 4,559
R-squared 0.163 0.151 0.155 0.164 0.147 0.201
Firm FE Yes Yes Yes Yes Yes Yes

Notes: Table shows the estimation result of Equation (10). Dependent variables are calculated at firm level.
“ED” means energy density of battery, “EC” means electricity consumption. “speed” stands for maximum
speed of an EV. Numbers of observations are different across columns because of missing data. Robust
standard errors clustered at the firm level are in parentheses. ***, **, and * denote significance at the 1, 5,
and 10 percent level, respectively.
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7 Empirical Result II: Input Responses to the Policy

To further test Implications V-VI, we turn to firms” input markets. Specifically, we focus on

technology and human capital.

7.1 Innovation

Table 5 reports estimate of Equation (7). For each patent type, the correlation between lagged
patent stock and the number of new patents is larger in the pre-period than in the post-period.
Specifically, for EV-related and intelligence-related innovation, path dependence vanishes in
the post-period, which is in line with the dual-credit policy pushing the industry toward these
fields. The coefficient for GV-related patents remains positive and is significant at the 10%

level, as expected because firms focusing on EV production would not switch to GV-related

innovation.
Table 5: Path Dependence in Innovation
1) 2) 3)
VARIABLES EV-related GV-related  Intelligence-
related
L.Stock of EV-related Patents x Pre 0.156**
(0.0729)
1.Stock of EV-related Patents x Post -0.0394
(0.0267)
1.Stock of GV-related Patents x Pre 0.240%**
(0.0720)
1.Stock of GV-related Patents x Post 0.182*%
(0.0980)
1.Stock of Intelligence-related Patents x Pre 0.275**
(0.107)
1.Stock of Intelligence-related Patents x Post -0.0394
(0.0591)
Mean 4.095 5.940 7.850
Observations 6,502 3,957 3,454
Firm Yes Yes Yes
Year Yes Yes Yes

Notes: Table shows the estimation result of Equation (8). Dependent variables are the number of different
types of patents applied in a year. “Pre” means before 2018. “Post” means on or after 2018. Robust standard
errors clustered at the firm level are in parentheses. ***, **, and * denote significance at the 1, 5, and 10 percent
level, respectively.

44



Figure 9 shows that newcomers increase innovation in car-related fields immediately after
the policy shock, prior to market entry. This result indicates that the policy induces newcomers
to switch to car-related innovation. It also suggests that “ever-newcomers” are not prevalent
in the data. Instead, newcomers are incentivized by the policy shock to participate in the
automotive industry. Finally, as shown in Appendix Figure F2, newcomers mainly turn to

EV-related innovations and relatively reduce GV-related innovations.
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Figure 9: Event Study of Car-related Innovation of Newcomers

Notes: The figure shows event-study results of the dual-credit policy on newcomers’ car-related innovation. The
policy shock occurs in 2018. Each circle indicates the point estimate of the treatment effect (i.e., the coefficient on
Newcomery x Ty in Equation (8)). Vertical dashed lines indicate 95% confidence intervals.

7.2 Talent

Finally, we turn to the labor input margin, evaluating how the dual-credit policy affects the
allocation of talent across firms. Following Implication VI, we hypothesize that firms prioritize
hiring specific types of talent according to product composition and attribute choices.

Figure 10 shows the results of estimating Equation (9). After the policy shock, EV-focused
firms are more concentrated in first-tier cities. This is in line with our prediction that firms

will find talents according to their attribute choice and innovation activities. EV-related and
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intelligence-related innovations concentrate in developed regions. Therefore, firms would hire
more talents there.

.08
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Figure 10: Job Spells in First-Tier Cities

Notes: Figure shows the event-study results of the dual-credit policy on EV-focused firms offering jobs in the four
first-tier cities-Beijing, Shanghai, Guangzhou, and Shenzhen. The year of policy shock is 2018. Each circle
indicates the point estimations of the treatment effect. Each vertical dashed line indicates the 95% confidence
interval of the treatment effect.

From the perspective of workers, the change in the supply side of the automotive industry
significantly affect the allocation of workers. First, joining EV-focused firms from non-EV-
focused firms is associated with a significant wage premium of around 5 log points (see
Appendix Table F1). Second, consistent with the positive wage premium, high-skilled workers
are significantly less likely to join GV-focused firms after the policy shock (see Appendix Figure
F3). Third, high-skilled workers are significantly more likely to join newcomers after the policy
shock, compared with non-high-skilled workers (see Appendix Figure F4). The switch of high-
skilled workers is in line with the fact that high-skilled positions are technologically closer to

EV-related and intelligence-related innovations.
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8 Conclusion

This paper documents how China’s dual-credit policy directed technical change in the
automotive sector toward vehicle electrification. Combining administrative production
records, new-vehicle specifications, and rich innovation and talent data, we document several
key transitions induced by the policy: First, the dual-credit policy creates a significant
price wedge between EVs and GVs that shifts demand (and thus supply) toward EVs.
Second, because of the NEV-target threshold, relatively small firms with GV production
above the threshold reduced GV production, while larger firms relatively increased it.
Third, the turn toward EVs substitutes for effort to reduce GV fuel consumption. Fourth,
cannibalization generates negative incentives for incumbents to produce high-quality EVs,
whereas newcomers” EVs exhibit higher quality in driving performance and intelligence.
Taken together, the dual-credit policy plays a significant role in the transition from GVs to
EVs, as well as the shift from incumbents to newcomers.

These production transitions are accompanied by shifts in technological innovation
and talent allocation within the industry. Innovation was redirected toward EV and
intelligence-related technologies, weakening path dependence in innovation. This shift was
mirrored in the labor market, where EV-focused firms increasingly hired high-skilled, highly
educated workers and concentrated activity in top-tier cities.

The results highlight the power of targeted regulatory policies to align private incentives
with climate and industrial objectives. The introduction of credit trading enables the market to
select players with comparative advantages. Cannibalization, combined with a new product
type with distinct technological requirements, further enhances newcomers’ advantages in

competition with incumbents.
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A Data Appendix

A.1 Data construction for step I analysis

We assemble multiple administrative data sources in constructing the sample that covers the
near universe of all new car products from 2010 to 2024.

The basis of this data set is the government-released announcements of motor vehicle
manufacturers and products. In each announcement, we can find a list of new products
released by manufacturers. While in this new product list, products are listed with their model
code instead of trim code, we can identify the trim that is newly released by further checking
the Road Motor Vehicle Manufacturers and Products Information Inquiry System. Figure Al
shows a sample page and its translation from the Road Motor Vehicle Manufacturers and
Products Information Inquiry System. It shows the detailed information of an FAW model
with trim code CA6463BEYV, including identifiers, dimensions, weights, performance data, key
intermediate input suppliers, production location, and others.

Second, we supplement some other performance data of electric vehicles from (1) the
Catalogues of Recommended Models for the Promotion and Adoption of NEVs, available from
2017 to 2022, (2) the Catalogues of Energy-Efficient Vehicles and NEVs Eligible for Vehicle
and Vessel Tax Reduction, available from 2012 onwards, and (3) the Catalogues of NEVs
Exempt from Vehicle Purchase Tax, available from 2014 onwards. In these catalogues, we
observe the identifier, dimension, curb weight, range, battery capacity, battery weight, battery
type, electricity consumption, battery type, motor power, and others. Compared with the
announcement data, these catalogues essentially enrich the performance measures available
for our analysis, enabling us to back out the NEV credit for each trim.

Third, we augment this data by combining the data from the China Automobile Energy

Consumption Query Systern,18 which provides information about vehicle energy consumption

18Refer to https://yhgscx.miit.gov.cn, last accessed: 26 September, 2025.
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e ZPUG16ES01W R ID W9150403 Productcode  ZPUGIGES0IW Product ID W9150403

ek 329 LA A 20200306 Batch 329 Release date 20200306
AR o — A AT ) e g ik U Manufacturer China FAW Group Co., Ltd. Brand FAW
ol Kk Location changohun —
R CAGIGIBEY AR SRR Trim code CAGGBEY Car category hunce
INBR K 4639 AERAE 1880 Length i Width 1880
1 Height 1640
SRS 1640 - ,
- = Total weight 2230 Curb weight 1810

e fit 2230 4 TR 1810 = ——

SEREEBRN 5 [y Passenger 5 Angle 20° /27
L =2 e d i i Max. speed 170 Load 1103/1127
S A it 3/ Overhang 919/910
SRE 5
".'I‘EE‘E il — Chassis Bearing type car body
AR Rl RRAEY Leaf springs -
Lk dag e Axles 2 Wheelbase 2810
RS g g 2810 Fronttrack 1615 RearTrack 1615
LIEE 1615 SRR 1615 Wheels 4
HEIE 4 Tire Spec. 225/65 R17,225/55 R19
e 225/65 R17,225/55 R19 Steering control | Steering wheel
L2 VCE: VIN LFBGEVO07 X X X X X X X X X
BRI (VIN) [LFBGEVO7 X X X X X X X X X Fuel type Pure electric Fuel consum.
ORI sl E) e Emission std.
HeBAR bR Engine Manuf.  Zhuzhou CRRC Times Electric Engine model CAM210PT2
REPUEFEN BRI ER RSB ARA R RENYIALS CAM210PT2 Displacement Motor power 140
Hefit REPLIHE 140 Inspection exem. 1 ABS Yes
AR 1 B RS 5 Other Optional configurations: logo without luminous effect, non-privacy glass, without side logo, side

decoration plate; Battery type: ternary lithium-ion battery; Battery manufacturer: Contemporary
HE BT D00 AR LS - B A TR S = T B - L B A T Amperex Technology Co., Ltd.; ABS system supplier: Bosch Automotive Systems (Suzhou) Co., Ltd.;
) TR AR BT AL AR B WA AABS RGeS I ABS eystom model V7T
PRGN AT BRZS 71;ABS RHEAIE-EVT111 End of prod. End of sales
= HM A E
A: Original Chinese version B: English translation

Figure Al: Sample Page of Trim Information

Notes: Data Source: Road Motor Vehicle Manufacturers and Products Information Inquiry System. In Panel B, the
translation is done by the authors.

from 2010 onwards. Specifically, we are able to observe administrative records of fuel
consumption of gasoline vehicles, which is crucial for analyzing the impact of the dual-credit
policy on fuel economy of vehicles.

Across these data sources, we use the trim code as the unique identifier to merge the data.
Trim code of vehicles in China is regulated under the Rules of Designating Trim Codes of
Automobiles and Trailers and the Technical Conditions for Determining the Same Trim of
Automobile Products. Take a trim code TSL7000BEVARO as an example. It consists of several
parts:

ZS,Ij \7;/ \09/ 0 BEV ARQ

~— ~— <~
OEM Code Vehicle Category Code Main Parameter Code Product Serial Number Classification code Customized Code

where TSL stands for Tesla, 7 is the category code for sedan, 00 is the displacement for sedan,

which is 0 for EVs, 0 following is the serial number, indicating it is the first product among this
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type. BEV indicates battery electric vehicle, and ARO is freely determined by firms. This trim
code indicates a specific trim of Tesla Model 3. We define the first four parts up to product
serial number of a trim code as the model code, which captures the same series of product. For
example, every Model 3 has the same TSL7000 model code in our data.

Together, we observe 2,665 unique model codes and 19,855 unique trim codes in our data
for the period from 2010 to 2024, produced by 156 original equipment manufacturers.

However, in this dataset, we lack two key variables to analyze the market outcomes of
cars: prices and sales. To add this important information, we turn to autohome . com, one of the
leading online platforms and forums of the Chinese auto market. It provides rich information
of cars on the market.

Collecting the public data available on the website, we assemble a comprehensive dataset
of cars from 2010 to 2024, with an extensive set of characteristics, including price, sales,
dimensions, weight, fuel consumption, driving performance, suppliers, and importantly,
intelligence-related measures.

There are several differences in the way of data recording between the autohome.com
and the administrative new car product data. Specifically, the autohome.com data is at
the specification level, which is even more granular than at the trim level because some
specifications only differ in terms of exterior or interior decorations, which is not sufficient
to be designated a new trim code. In sum, we collect data for 2,475 unique models and 45,268
specifications. Noting that the autohome.com data also covers many imported foreign brand
cars, the coverage of models is slightly lower than the administrative new car product data.
It is worth noting that there are only identifiers for models and specifications defined by the
platform, which is not directly mapped to the trim code. Moreover, the name of producers
in this data is different from the official firm name of original equipment manufacturers as in
the administrative records. Because of the ambiguity in the autohome.com data, we do not

consider forming a 1-to-1 mapping at the most granular level. Instead, we identify the original
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equipment manufacturers in the data so that we can distinguish incumbents and newcomers.
We manage to match 137 original equipment manufacturers, covering 1,685 models and 35,828

specifications.

A.2 Data construction for step II analysis

Patent Data

We combine two data sources in constructing the patent data used in this study. The
first one is the patent application records from the China National Intellectual Property
Administration (CNIPA). We identify all the patents application filled by the manufacturers,
the key shareholders, and the affiliated firms. We start from the CNIPA system because it
offers the query function that helps us to precisely identify each firm with their Chinese
name. Starting from Google Patent may include some noise in this step of identification.
We supplement the patent records with Google Patent, which provides the full text contents,
Cooperative Patent Classification (CPC) code, legal status and corresponding timeline, as well
as citations of patents.

Figure A2 shows the dynamics of the number of patent applications filled in each year,
as well as the share of patents that are applied by manufacturers. We can see that the total
number increases rapidly in the past decade except for 2024. This is in line with the fact that
with the electrification process of vehicles, many innovations take place in the automobile
industry. At the same time, the share of patents applied by manufactures started decreasing
after 2018. In general, the manufacturers only account for a small share of patents among
the car manufacturing groups, highlighting the importance of including affiliated firms into
account.

To identify the key shareholders of manufacturers and the affiliation network of firms,
we leverage the ownership structure data from tianyancha.com, one of the leading business

information platforms of Chinese companies that provides company registration data, legal
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Figure A2: Share of Patents by Manufacturers

Notes: Figure shows the total number of patents and the share of patents applied by manufacturers across years.

tilings, financial records, and corporate relationships. Figure A3 shows a sample page of
ownership structure of a car manufacturer in tianyancha.com. We identify a key shareholder
as a firm that directly or indirectly hold more than 25% of shares, echoing the definition
of connected firms in the dual-credit policy. Then, we include all affiliated firms of these
key shareholders, defined as firms whose shares are directly or indirectly hold by the key
shareholders. It is worth noting that, in tianyancha.com, we can only observe ownership
structure up to three layers of indirect shareholding. Therefore, we assume that firms that are
indirectly linked through more than three intermediate firms are not affiliated with each other.

We identify three types of innovation in this study, namely EV-related, GV-related, and
intelligence-related innovations. The identification of the first two is based on previous
literature. The identification of the last one is based on inquiry with a leading Large Language
Model (LLM) about “the key information tech technologies applied in the auto industry”.
Then, we search for the corresponding CPC code based on the key words of technologies.

Table A1l summarizes the CPC and IPC codes used to categorized innovations.
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Figure A3: Sample Page of tianyancha.com

Notes: Figure shows the sample page of ownership structure of a company on tianyancha.com.

Table Al: IPC and CPC Codes in Innovation Categorization

IPC Code CPC Code  Description

EV-related Innovation

Arrangement or mounting of electrical propulsion units in
B60K1 .

vehicles.
B60K6 Arrangement or mounting of hybrid propulsion units.

B60K7 Arrangement or mountmg of aux111ary drives or power

take-offs.

Electric propulsion using power supplied within the
B60L3 . .

vehicle (e.g. batteries).
B60L7/1, Electric propulsion with power supply external to the
20 vehicle, such as trolley wires or inductive systems.

Continued on next page
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IPC Code

CPC Code

Description

Electric propulsion with energy recovery (e.g. regenerative

B6OLT1 braking).

Methods or apparatus for reducing energy consumption in
B60L15 . .

electric propulsion.

Control systems for hybrid or electric vehicles, including
B60W10/08, torque distribution, braking coordination, and power flow
24,26,28 management.
B60W20 Control systems specially adapted for hybrid vehicles.
B60L11/18 Regenerative braking with control of returned energy

storage.

Electric propulsion using external sources of power along
B60L1 . .

a fixed track (railway, tram, trolley).
B60L50 Elec.tric propulsion details of power supply means for road

vehicles.

Electric propulsion details concerning charging equipment
B60L53

and methods.
B6OL55 Electric Propu.lsmn details concerning electric energy

storage in vehicles.

Electric propulsion details concerning wireless energy
B60L58 :

transfer for vehicles.

Control systems specially adapted for hybrid or electric
B60W60 . . .

vehicles with energy management strategies.
HO1MS8 Fuel cells and related structures.
H01M10/02, Secondary (rechargeable) batteries, especially lithium-ion
04, 052, structures, electrodes, and electrolytes.
0525

Constructional details of electrochemical cells (e.g.
H01M50 .

casings, current collectors, connectors).

GV-related Innovation

Arrangement or mounting of internal combustion engines
B60K5 . :

in vehicles.
B60K6 Arrangement or mounting of hybrid propulsion units.

Arrangement in connection with combustion air intake or
B60K13 . .

gas exhaust of propulsion units
B6OK15 Arrangement in connection with fuel supply of

combustion engines

Continued on next page
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IPC Code

CPC Code

Description

B60S5/02

B60W10/06
B60W20
FO2B

F02D

FO2F

FO2M

FO2N

FO2P

Supplying fuel to vehicles

Conjoint control of vehicle sub-units, including control of
combustion engines

Control systems specially adapted for hybrid vehicles
Internal-combustion piston engines

Controlling combustion engines

Cylinders, pistons, or casings for combustion engines
Supplying combustion engines with fuel or air
Starting of internal combustion engines

Ignition systems for internal combustion engines.

Intelligence-related Innovation

B60K37
B60L2260

B60R11/02

B60W30
B60WS50

B60W60

B62D25/14
G02B27/01

GO5B13

GO6F3/0481

GO08G1/0968

H04W4/02

Dashboards (as road-vehicle superstructure sub-units)
Indexing for operating modes of electric propulsion

Arrangements for holding or mounting articles, for radio
sets, television sets, telephones, or the like

Purposes of road vehicle drive control systems
Details of control systems for road vehicle drive control

Drive control systems specially adapted for autonomous
road vehicles

Dashboards as superstructure sub-units
Head-up displays

Adaptive control systems, including artificial intelligence
applied to control.

Touch-sensitive input devices, particularly touchscreens as
user interfaces.

Systems involving transmission of navigation instructions
to the vehicle

Wireless communication services for location-based
applications (e.g. navigation).

Notes: Table shows the IPC and CPC codes for classifying patens into EV-related innovations, GV-related

innovations, and intelligence-related innovations. Following previous literature, we treat hybrid (non-

plug-in) patents as GV-related innovations.

LinkedIn Profiles
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LinkedIn is one of the leading online platforms where individuals and organizations
connect, share career information, and explore job opportunities. Individual profiles on
LinkedIn provide rich information about people’s education background, job history, and
details about specific tasks, experience, and skills. Given this advantage, LinkedIn profiles
have been increasingly used in economics research. In this study, we use LinkedIn profiles
to capture individuals who have ever worked for leading car manufacturers in China, which
enables us to look at the labor market consequences of the transition in the auto industry.

While LinkedIn has left China since 2019, there are still many China-based users remain
active on the platform. Moreover, Chinese users can still register for a LinkedIn profile. In sum,
there are more than 16 million China-based user profiles on LinkedIn, which is sufficiently
large. However, even with a large user group, LinkedIn does not cover the universe of
workforce. In particular, LinkedIn is more representative for high-tech industries. In recent
years, auto industry increasingly incorporates IT- and Al-related technologies. Therefore, we
argue that LinkedIn profiles should also have a good representativeness for the auto industry.
When we look at the auto industry, many engineers, technicians, designers, and managers
are included. Restricting our focus on China-based users who have ever worked for car
manufacturers during 2010 to 2024 gives us a total sample of 173,320 user profiles and 420,322
job spell records.

It is worth noting that LinkedIn records car manufacturers in a way different than
identifying each individual original equipment manufacturer. To enable comparisons across
results, we categorize 209 car manufacturing firms listed on LinkedIn into 55 groups and the
“other” that covers all the original equipment manufacturers in our baseline datasets. Further,
we divide groups into EV-focused and GV-focused groups based on the share of EV products
among all new products introduced. Specifically, those with a share of EV products above the

median are defined as EV-focused, while the others are defined as GV-focused.
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B Additional Details of the Policy Background

B.1 Calculation of CAFC

The target levels of fuel consumption are set according to the national standards entitled “Fuel
consumption evaluation methods and targets for passenger cars”. The national standards are
managed by the government and are drafted by leading research institutions in the field as
well as some leading automakers. The standards are updated periodically. Within the studied
period, there are three versions of this national standard, which became effective on the 1
January of 2012, 2016, and 2021.

The target levels are determined by curb weight and the number of seats. Figure B1 shows
the target levels of litre of fuel consumed per 100 kilometers of driving across different versions
of standards. It is worth noting that in the 2021 version of the standard, the evaluation method
was changed from the New European Driving Cycle (NEDC) to Worldwide harmonized Light
vehicles Test Cycle (WLTC). The latter one is considered to be closer to real-world driving
conditions. In general, the fuel consumption under WLTC is about 10% higher than that under
NEDC.

The compliance level is set above the target level when a standard newly comes into force
and gradually converge to the target level overtime. Figure B2 shows the compliance-target
ratio across years.

As shown in Section 4, the calculation of CAFC credit is based on the following equation,
which compares the weighted average fuel consumption of cars sold and the average

compliance level determined by the above standards.

I & (w) g .
CAFC Credit — | 2= ()9 - Lj-1 ) Q8
j=11] j=114j

compliance level actual FC
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Figure B1: Target Level of Fuel Consumption

Notes: Figure shows the target levels of litre of fuel consumed per 100 kilometers of driving across different
versions of standards. In the 2021 version of fuel consumption target, the evaluation method changed from NEDC
to WLTC.
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Figure B2: Compliance-Target Ratio

Notes: Figure shows the Compliance-target Ratio across years.

where the weighting factor W is favoring energy-saving GVs and EVs. Table Bl shows the

values of W across years and car categories.
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Table B1: Weighting Factor W

14 2012-2015 2016-17 2018-19 2020 2021 2022 2023 2024
BEV/PHEV/FCEV 5 5 3 2 2 1.8 16 13
Energy-saving GV 3 3.5 2.5 1.5 1.4 1.3 1.2 1.1

Notes: Table shows the values of W across years and car categories. “BEV” stands for battery electric
vehicle. “PHEV” stands for plug-in hybrid electric vehicle. “FCEV” stands for fuel cell electric vehicle.
“Energy-saving GV” stands for GVs with fuel consumption <2.8L/100km under the 2012 and 2016
standards, and <3.2L/100km under the 2021 standard.

B.2 Calculation of NEV credit

Throughout this study, we do not take fuel cell electric vehicles into account because it is still
an immature technology with limited market practices. Here, we focus on the calculation of
NEYV credit for battery electric vehicles and plug-in hybrid electric vehicles.

For battery electric vehicles, the NEV credit is determined by curb weight (w), range (r),
battery energy density (d), and electricity consumption level (c). The calculation is based on

the following equation:

ki(r) x  Zi(c,w) , 2017 version
~—— ——

NEV Credit — standard credit e adjustment factor

ki(r,w) * q(c,w) * 0a(r) * {3(d) , 2020 and 2023 versions
—~ —~—

r adjustment factor  d adjustment factor

Figure B3 summarizes the calculation criteria across different versions of the dual-credit
policy. In general, the criteria become more and more stringent overtime, leading to a decrease
of per vehicle credit.

Except for the positive credit calculation formula, the government also adjust ratio of the
NEV credit target on GV production overtime (see Figure B4). Before 2024, it increases by 2%
each year. Afterwards, it increases by 10% each year and is assumed to keep increasing in 2026

and 2027 at the time of research.
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Figure B3: NEV Credit Calculation

Notes: Figure shows the rules of calculating each component in NEV credit formula. Panel A shows the
relationship between range and the standard credit. Panel B shows the space of electricity consumption and curb
weight of EVs. {; is determined by these two factors. Specifically, for the 2017 version, satisfying the electricity
consumption target gives you a {1 = 1 or {; = 1.2, depending on which target is achieved. For the 2020 and 2023
version, meeting the target gives you {7 > 1, where the actual {; depends on the electricity consumption level and
is capped at 1.5. Panel C shows the relationship between {, and range. Panel D shows the relationship between (3
and energy density of battery.

B.3 Credit Clearance and Connected Firms

CAFC credits are only allowed to be transferred between “connected firms” defined by the

government. Firms are connected when they meet at least one of the following conditions:

1. A domestic car manufacturer and another domestic manufacturer in which it directly or

indirectly holds 25% or more of shares.

2. Two domestic car manufacturers that are both directly or indirectly held 25% or more by

the same domestic third party.

3. Anauthorized importer of cars from a foreign manufacturer and a domestic manufacturer

in which that foreign manufacturer directly or indirectly holds 25% or more of shares.
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Figure B4: v Over time

Notes: Figure shows the dynamics of vy across years. Dashed line indicates the proposed levels in the new draft for
comment, which is not yet determined or come into force.

Among the about 200 active manufacturers that are ever observed in the market, we can
identify 23 connected sets connecting 118 manufacturers as shown in Figure B5 based on
the ownership structure data from tianyancha.com. A lot of manufacturers are part of
the few large groups, including Shanghai Automotive Industry Corporation (SAIC), First
Automotive Works (FAW), Guangzhou Automobile Group (GAC), Dongfeng Automobile
Company (DFAC), Beijing Automotive Group (BAIC), Changan Automobile, Chery, and
Geely. BYD and Great Wall Motor are also major automakers in China. However, compared
with the groups listed in text, they do not have a large connected network of original

equipment manufacturers.

B.4 Contemporary policies

Purchase subsidies in general decrease over time, except that in 2018, those with a range over
400km witnessed an increase in subsidy level (see Figure B6).

Tables B2 and B3 show the subsidy levels in charging station investments.
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Connected OEM Companies Network
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Figure B5: Connected Sets of Manufacturers

Notes: Figure shows the connected sets of manufacturers. Each dot stands for one manufacturer.
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Here we assume other subsidy multipliers to be 1.

Figure B6: Purchase Subsidies for EVs

Notes: Figure shows the dynamics of purchase subsidies of new energy vehicles.
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Table B2: Subsidy by region and year

Region 2013 2014 2015
Promotion Volume Subsidy Promotion Volume Subsidy Promotion Volume Subsidy
Q (mil. RMB) Q) (mil. RMB) Q (mil. RMB)
Key Clusters 2500 < Q < 5000 20 5000 < Q < 7000 27 10000 < Q < 15000 50
5000 < Q < 7000 30 7000 < Q < 10000 38 15000 < Q < 20000 70
7000 < Q < 10000 45 10000 < Q < 15000 55 20000 < Q < 25000 90
Q > 10000 75 Q > 15000 90 Q > 25000 120
Other Regions 1500 < Q < 2500 10 3000 < Q < 5000 18 5000 < Q < 7000 24
2500 < Q < 5000 20 5000 < Q < 7000 27 7000 < Q < 10000 34
5000 < Q < 7000 30 7000 < Q < 10000 38 10000 < Q < 15000 50
Q > 7000 50 Q > 10000 67 Q > 15000 80

Notes: “Key Clusters” include Beijing-Tianjin-Hebei region, Yangtze River Delta, and
Pearl River Delta.

Table B3: Subsidy by region and year (Cont’d)

Key regions for air pollution control

Central provinces and Fujian Province

Other provinces

Year Q Subsidy (mil. RMB) Q Subsidy (mil. RMB) Q Subsidy (mil. RMB)
2016 Q>30000 min(120,90+ S0 x75)  Q>18000  min(120,54+ IO x 45)  Q>10000  min(120,30 + L0 x 2.4)
2017 Q35000  min(140,95+ 3% x8)  Q>22000 min(140,59.5+ ST x55)  Q>12000 min (140,325 + L130 x 2.8)
2018 Q>43000 min(160,104 + 4000 x 95)  Q>28000  min (160,67 + L2 x6)  Q>15000  min(160,36 + L7100 x 3)
2019 Q>55000 min(180,115+ 222500 % 10)  Q >38000  min(180,80 + 253300 » 7 Q >20000 min(180,42 + 2200 » 32
2020 Q>70000  min 5200,126 + Q7000 113 Q >50000  min (200,90 + L2209 x g Q >30000 min Ezoo, 54+ L300 x 4.5;

Notes: “Key regions” include Beijing, Shanghai, Tianjin, Hebei, Shanxi, Jiangsu,
Zhejiang, Shandong, Guangdong, and Hainan provinces.
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C Additional Descriptive Results

C.1 Estimating Manufacturer Fixed Effect in Model Sales

We leverage the monthly national model sales from autohome.com data to estimate the
following empirical model:

In(Yjt) = Bx Xt + 75 + 0t + &t

where Yj; is the yearly sales of model j introduced in year t. We control for car category and
fuel type of cars, as well as manufacturer fixed effects and year fixed effects in the model.
¢ is the coefficient of interest, which captures the residualized average sales per model of
each manufacturer. It indicates the “popularity” of products made by each manufacturer in
the market. We do not control for many car attributes because we would like to capture the
difference between manufacturers, taking into account their endogenous price choices and
attribute choices. Therefore, we are not trying to establish any causal linkage between sales
and manufacturers. But rather, we try to compare the average sales between manufacturers
within the same category of cars and the same year, in an aggregate way that we weight the
comparisons by their contributions to sales variance.

For comparison, we estimate the above equation and control for price. By doing so, we
partial out the impact of different manufacturers have different price strategies. The estimated
manufacturer fixed effects would be closer to a “competitiveness” or “attractiveness” measures
given the same price. Results are shown in Figure C1. The take-away messages are identical
to those drawn from the main text: (1) In the EV market, new manufacturers are taking place
of incumbents. (2) In the EV market, domestic manufacturers are replacing joint-ventures to
hold the leading positions. Moreover, we can see that the estimated fixed effects are smaller
for GV manufactures than for EV manufacturers, indicating that, with price considered, EVs

have higher sales per model than GVs.
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Figure C1: Top Manufacturers in the Automobile Market (Controlling for Price)

Notes: Figure shows top manufacturers of gasoline vehicles (GVs) and electric vehicles (EVs) in the market. The
y-variable is the residualized sales per model captured by the estimates of manufacturer fixed effects.
Log-transformed price, body type, energy type, and year fixed effects are controlled for in this regression. The
estimation is based on autohome. com data.

C.2 Newcomers and their market share
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Figure C2: Newcomers after the implementation of Dual-Credit Policy

Notes: Figure shows the dynamics of the share of new car products introduced by newcomers and incumbents, as
well as the dynamics in the market share of products produced by newcomers. Data source: administrative
production records of each original equipment manufacturer.

C.3 Dynamics of CAFC and NEV Credits

Throughout the years, the total supply of credits in the market are in general positive, with

the exception of 2020 when COVID hit the auto industry (see Figure C3). While the aggregate
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supply is positive, credit price is not zero because individual firms with negative credit would

still need to reach bilateral agreement with credit sellers. Nonetheless, rapidly increasing

aggregate supply drives down the price of credits.
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Figure C3: Dynamics of CAFC and NEV Credits

Notes: Figure shows the aggregate number of CAFC and NEV credits in the market across years. All the credits
are recorded before credit trading.
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D Additional Details of the Model

D.1 Proofs
D.1.1 Divergence in GV production with discontinuity in NEV credit target

First, consider a small number ¢ > 0, then the net profit of producing Q8 + ¢ instead of Q8 can

be written as:!?

Qe . = Q . e—0 =
/0 (pj —cj)dj —v(Q3 +¢) —/0 (pj—cj)dj — —71Q¥ <0

Therefore, firms with GV productions just above the threshold would choose to reduce their
GV productions. Given the fact that marginal profit p; — ¢; > 1, Vj, we have

3 (J& (pj = cdj — (8 +e))

0
de >

Q+e . _ o} ‘
(pj—cj)dj —7(Q¥ +¢) — /O (pj —cj)dj =0

= Jes.dt. /
0

D.1.2 Cannibalization and the choice of attributes

Based on the first-order derivative, regarding a given attribute x, we have the following first

order condition (FOC):

0= —C’(x]') + ([/\Jgr ogx]]. + [/\? o eX]j) q;+ [(q) oAy) m]j,

credit term

8
where ¢* = %, et = 5.

For simplicity, assume the attribute is not included in credit calculation, ([A‘f{ o g*]i + [/\f[ o] j) q; —

9Here we slightly abuse the notation that j stands for each car sold instead of each car product as in the main text.
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0. Consider a newcomer with sj = 0 and q; ~ 0, we have

wher N stands for “newcomers”.

Consider an incumbent making the decision about x, we have

¢'(x)) = Brsj(x!) (1= s;(x")) my(x') = Bsi(x") ) si(xl)my(x)

leFe\{j}

where [ stands for “incumbents”.

For mj > 0,V}; and x satisfying ¥ > 0, that is, x is an attribute valued by consumers, we

have

D.1.3 Solving cost minimization problem

Given the cost minimization problem:

min ¢, =Y wrh, +rem
{hn}{\',mﬂ a ; fnltn fta

s.t. A?fs(a) (thﬂn> mgﬂ Z Xa,

we can write down the Lagrangian:

_ Ba an Oa
L= Xn:wf/"h” +rpmg — A (Af,s(u) (I;[hz > mos — xa>
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Then we have FOCs:

/517 an 5,;
oL Y Af,s(u) [T, hZ My _ Xa
O T T e e
oL Xg
: = A0, —
aom, Tf “m,
Sh = A'ymxa’ . _ Adyx,

Plugging it back to the cost function, we have:

*

c
= wa,’(h;r + rfm;‘ = AXx, (Z%T + 5a> =Ax, => A= xi
T T a

Therefore, we have

* o __ _/Sﬂ <51/1 at
cy, = Kg- Af/s(u) Ty (Hw}r> - X4
T

where K, = (HT ’y;ﬂ“) 5%
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E Model Estimation

In this section, we provide details about estimating the model outlined in 4. The purpose of
the estimation is to get A$¢, the shadow price of credits, which speaks to the direct impacts of
the dual-credit policy. The procedure consists of three steps. First, we estimate the coefficients
in the utility function, especially the coefficient of price a. Second, we calculate the markup of
vehicles based on price elasticity, and back out the sum of marginal cost ¢ and credit burden
7. Finally, we regress the sum of c and T on a set of car attributes and the credits to get the

coefficient of credits, which stands for the shadow price A.

E.1 Demand side

Based on the multinomial Logit model we have, we can write down the following equation for
estimation:

Ins;, —Insg, = x]-yﬁx —apy+¢it T ey (11)

It is worth noting that, p;, here should be the actual cost faced by consumers. Following
Barwick et al. (2024a), we take taxation and subsidies into account. Specifically, we use the

consumer cost below when estimating a:

1 + value-added tax rate + purchase tax rate
1 + value-added tax rate

Consumer Cost = p = MSRP x — Subsidy

As documented in the literature, price is endogenous in the demand equation because price
may be correlated with unobserved quality that is related to sales. Following Barwick et al.
(2024a), we consider the following two instruments: (1) national purchase subsidies for
EVs. The national purchase subsidies are largely determined by the stair-wise function of
range of EVs, and the formula changes across years. This generates sufficient variations for

identification. (2) purchase tax for cars. Purchase tax is normally 10% of the list price of
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vehicles. However, there are several policy shocks that generates variations for identification.
Specifically, from 1 October 2015 to 31 December 2016, the tax rate was reduced to 5% for
cars with displacement below 1600 ml. In 2017, the tax rate was set at 7.5% for cars with
displacement below 1600 ml. Also, as stated in Section 2, EVs are exempted from purchase tax.
The identification assumption is that Because of the calculation method, both instruments are
strong predictors of p.

Estimation results are shown in Table E1. In our preferred specification in column (2), the
coefficient of In(p) is estimated to be -2.293, which is comparable to the number in Hu et al.
(2025). This point estimate result is robust to changing the model into a nested Logit model
where consumers first choose whether to buy the outside good or EVs or GVs, then they choose

a specific product.

Table E1: Demand Estimation

1) (2) 3) 4)
VARIABLES ln(S]‘/So) 11’1(5]‘/50) ll’l(Sj/So) ln(S]'/SO)
In(p) -1.254%** -2.293%** 0.118 -2.027***
(0.162) (0.444) (0.0721) (0.571)
ln(s]-‘g) 0.940*** 0.0731
(0.00780) (0.0967)
Range 0.00121* 0.000927 0.00426*** 0.00120
(0.000708) (0.000654) (0.000854) (0.000764)
Weight 0.000681 0.00154*** -0.000722*** 0.00130**
(0.000540) (0.000510) (0.000189) (0.000510)
Power 0.00181 0.00316* -0.000187 0.00280
(0.00165) (0.00174) (0.000576) (0.00177)
Fuel Consumption -0.00312 -0.00556 0.00346** -0.00514
(0.0157) (0.0162) (0.00158) (0.0149)
Observations 12,902 12,902 12,900 12,900
R-squared 0.009 0.003 0.941 0.144
Model MNL MNL Nested Nested
Estimation OLS v OLS v
Product FE Yes Yes Yes Yes
Firm-Quarter-Market Yes Yes Yes Yes

Notes: Table shows the estimation result of Equation (11). “MNL” stands for multinomial Logit model.
“Nested” stands for nested Logit model where consumers first choose whether to buy the outside good or
EVs or GVs, then they choose a specific product. ln(s]-‘ g) indicates the log share of product j within product
nest ¢ = EV, GV. Robust standard errors clustered at the market level are in parentheses. ***, **, and * denote
significance at the 1, 5, and 10 percent level, respectively.
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E.2 Supply side

From the FOC of firms regarding vehicle price in Section 4, we can write down the following:

p—c—7=(PoA,) ' (—s)

where we assume that price does not directly affect the credits of vehicles. Given the elements

in Ap satisfying

a5, | osi(l=sj), k=]
lXSkS]', k # ]
and the fact that # = —2.293/p, we can calculate the margins of vehicles. It is worth noting

that, to back out the marginal cost and the tax burden of credit T, we use the price faced by
producers in the calculation, which is defined as follows:

1 — consumption tax rate

roducer Irice 1+ value-added tax rate

Results indicate that markup takes up about 44% of the price.

E.3 Credit values

With the sum of marginal cost and the tax burden of credits, we can divide them by estimating

the following equation:

(c+7T)jy = Bo+ BxXj+ PrgCAFC + BreNEV + jy + iyr + m + €y

where CAFC and NEV indicate CAFC and NEV credits, respectively. The logic is that, with
attributes X; and a set of fixed effects that affect the marginal cost controlled for, we can identify

the coefficients of credits, which would then capture the shadow prices A3°. The Results in
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Table E2 suggests that the average value of an NEV credit is around 5,880 CNY while that for a

CAFC credit is around 3,420 CNY. The fact that NEV credit is more valuable is consistent from

the policy setting.
Table E2: Supply Estimation
1) 2)
VARIABLES MC MC
NEV credit -0.588***
(0.0536)
CAEFC credit -0.342%**
(0.116)
Speed -0.0108*** -0.00598***
(0.00153) (0.00184)
Power 0.0218*** 0.0417***
(0.00117) (0.00245)
Weight 0.00762*** 0.0101***
(0.000447) (0.000404)
Range 0.00185***
(0.000313)
Fuel Consumption -0.524%**
(0.104)
Observations 13,269 162,368
R-squared 0.901 0.898
Sample EV GV
Firm-Year Yes Yes
Year Released Yes Yes
Market Yes Yes

Notes: Table shows the estimation result of estimating the cost equation. “MC” stands for marginal cost.
Robust standard errors clustered at the market level are in parentheses. ***, **, and * denote significance at the
1,5, and 10 percent level, respectively.

We also consider the dynamics of credit prices and calculate the average credit value per
vehicle from 2018 to 2024. Figure E1 shows that the average credit value for EV is always
positive while that for GV is always negative. The change in credit values for EV is generally

mapped (inversely) to the market dynamics of aggregate credit surplus/deficit.
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Credit Value per Vehicle (CNY 10K)

Figure E1: Dynamics of CAFC and NEV Credit Values Per Vehicle

Notes: Figure shows the average credit value per vehicle for EVs and GVs across years.
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F Additional Empirical Results

Energy Consumption
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Figure F1: Decrease of Fuel Consumption Overtime

Notes: Figure shows the decrease of fuel consumption of gasoline vehicles across years. Each dot stands for the
estimation of coefficient é; in the following equation:

FCjy = Z Ot + BxXjt +vf+ Ap + €
142017

where FCj; is the fuel consumption level of product j introduced in year t. J; captures the relative level of fuel
consumption in year t compared with the baseline year 2017. We control for curb weight and its square term, firm
fixed effects ¢, and brand fixed effects A;, in the equation. We estimate the equation with the administrative new
car product data. Capped spikes indicate the 95% confidence interval. Robust standard errors are clustered at the
firm level.
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Figure F2: Event Study of Innovation of Newcomers

Notes: Figure shows the event-study results of the dual-credit policy on EV-related and GV-related innovation of
newcomers. The year of policy shock is 2018. Each circle indicates the point estimations of the treatment effect
(i-e., the coefficient of newcomersy x T; in Equations (8))). Each vertical dashed line indicates the 95% confidence
interval of the treatment effect.
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Table F1: Wage Premium of Joining EV-focused Firms

1) 2) 3) 4) &)

VARIABLES Aln(wage) Aln(wage) Aln(wage) Aln(wage) Aln(wage)
EV-focused Firms x Post  0.0708*** 0.0546*** 0.0552*** 0.0435** 0.0434**

(0.00960) (0.00983) (0.0177) (0.0178) (0.0178)
GV-focused Firms x Post  -0.0258** -0.0288** -0.0130 -0.0277 -0.0276

(0.0110) (0.0113) (0.0215) (0.0206) (0.0206)
Mean 0.0822 0.110 0.117 0.0974 0.0974
Observations 127,615 117,424 41,692 88,190 88,190
R-squared 0.004 0.012 0.012 0.225 0.225
Worker FE No No No Yes Yes
Year FE No Yes Yes Yes Yes
Education FE No No Yes No No
Gender FE No No Yes No No
Job Title FE No No No No Yes
City FE No Yes Yes No No

Notes: Table shows the result of regressing the change between log end salary of last job and the log start salary
of the new job. The estimation sample is at the job spell level. Robust standard errors clustered at the individual
level are in parentheses. ***, **, and * denote significance at the 1, 5, and 10 percent level, respectively.
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Figure F3: High-Skilled Workers to Join GV-focused Firms

Notes: Figure shows the event-study results of the dual-credit policy on high-skilled workers joining GV-focused
firms. The year of policy shock is 2018. Each circle indicates the point estimations of the treatment effect of the
interaction effect of high-skilled workers and the post-policy indictor. Worker and year fixed effects are controlled
for. Each vertical dashed line indicates the 95% confidence interval of the treatment effect.
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Figure F4: High-Skilled Workers to Join Newcomers

Notes: Figure shows the event-study results of the dual-credit policy on high-skilled workers joining newcomers.
The year of policy shock is 2018. Each circle indicates the point estimations of the treatment effect of the
interaction effect of high-skilled workers and the post-policy indictor. Worker and year fixed effects are controlled
for. Each vertical dashed line indicates the 95% confidence interval of the treatment effect.
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